scispace - formally typeset
Search or ask a question
Topic

Geographic routing

About: Geographic routing is a research topic. Over the lifetime, 11687 publications have been published within this topic receiving 302224 citations.


Papers
More filters
Patent
14 Nov 1997
TL;DR: In this article, a routing policy is defined at the dispatcher using at least one routing rule having a condition and an action, and each of the requests is routed to a destination by testing the current state information against the condition.
Abstract: A routing apparatus is located at an outbound “edge” of an administrative domain or at an inbound “edge” of an ISP or other network facility. The apparatus, which is preferably implemented in software, includes a “dispatcher.” The dispatcher has a database associated therewith in which information about a “current state” of the network or some resource therein is collected and maintained. The “current state” information is generally of two types: quality-of-service (Q-o-S) information associated with transactions involving a particular Web server, or more general network resource availability information. According to the invention, a routing “policy” is defined at the dispatcher using at least one routing rule having a condition and an action. As service requests arrive at the dispatcher, each of the requests is routed to a destination by testing the current state information against the condition.

115 citations

Journal ArticleDOI
TL;DR: The Reliable Reactive Routing Enhancement (R3E) is designed to enhance existing reactive routing protocols to provide reliable and energy-efficient packet delivery against the unreliable wireless links by utilizing the local path diversity.
Abstract: Providing reliable and efficient communication under fading channels is one of the major technical challenges in wireless sensor networks (WSNs), especially in industrial WSNs (IWSNs) with dynamic and harsh environments. In this work, we present the Reliable Reactive Routing Enhancement (R3E) to increase the resilience to link dynamics for WSNs/IWSNs. R3E is designed to enhance existing reactive routing protocols to provide reliable and energy-efficient packet delivery against the unreliable wireless links by utilizing the local path diversity. Specifically, we introduce a biased backoff scheme during the route-discovery phase to find a robust guide path, which can provide more cooperative forwarding opportunities. Along this guide path, data packets are greedily progressed toward the destination through nodes' cooperation without utilizing the location information. Through extensive simulations, we demonstrate that compared to other protocols, R3E remarkably improves the packet delivery ratio, while maintaining high energy efficiency and low delivery latency.

115 citations

Book ChapterDOI
05 Apr 2007
TL;DR: In this paper, the authors present results from measurement-based characterization of routing stability in two network deployments, the UCSB MeshNet and the MIT Roofnet, using detailed link quality information collected over several days from each network.
Abstract: Considerable research has focused on the design of routing protocols for wireless mesh networks. Yet, little is understood about the stability of routes in such networks. This understanding is important in the design of wireless routing protocols, and in network planning and management. In this paper, we present results from our measurement-based characterization of routing stability in two network deployments, the UCSB MeshNet and the MIT Roofnet. To conduct these case studies, we use detailed link quality information collected over several days from each of these networks. Using this information, we investigate routing stability in terms of route-level characteristics, such as prevalence, persistence and flapping. Our key findings are the following: wireless routes are weakly dominated by a single route; dominant routes are extremely short-lived due to excessive route flapping; and simple stabilization techniques, such as hysteresis thresholds, can provide a significant improvement in route persistence.

114 citations

Journal ArticleDOI
TL;DR: This paper contains an introduction to the problem field of geographic routing, a specific routing algorithm based on a synthesis of the greedy forwarding and face routing approaches, and an algorithmic analysis of the presented algorithm from both a worst-case and an average-case perspective.
Abstract: The one type of routing in ad hoc and sensor networks that currently appears to be most amenable to algorithmic analysis is geographic routing. This paper contains an introduction to the problem field of geographic routing, presents a specific routing algorithm based on a synthesis of the greedy forwarding and face routing approaches, and provides an algorithmic analysis of the presented algorithm from both a worst-case and an average-case perspective.

114 citations

Proceedings ArticleDOI
12 Oct 1998
TL;DR: This work proposes a distributed routing scheme, called ticket-based probing, which searches multiple paths in parallel for a satisfactory one, designed to work with imprecise state information and can tolerate high degree of information imprecision.
Abstract: The goal of quality-of-service (QoS) routing is to find a network path which has sufficient resources to satisfy certain constraints on delay, bandwidth and/or other metrics. The network state information maintained at every node is often imprecise in a dynamic environment because of nonnegligible propagation delay of state messages, periodic updates due to overhead concern, and hierarchical state aggregation. The information imprecision makes QoS routing difficult. The traditional shortest-path routing algorithm does not provide satisfactory performance with imprecise state information. We propose a distributed routing scheme, called ticket-based probing, which searches multiple paths in parallel for a satisfactory one. The scheme is designed to work with imprecise state information. It allows the dynamic trade-off between the routing performance and the overhead. The state information of intermediate nodes is collectively used to guide the routing messages along the most appropriate paths in order to maximize the success probability. The proposed algorithm consider not only the QoS requirements but also the cost optimality of the routing path. Extensive simulations show that our algorithm achieve high call-admission ratio and low-cost routing paths with modest overhead. The algorithm can tolerate high degree of information imprecision.

114 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
95% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless network
122.5K papers, 2.1M citations
94% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202286
202133
202037
201952
201890