Topic
Geometrical optics
About: Geometrical optics is a(n) research topic. Over the lifetime, 6875 publication(s) have been published within this topic receiving 121923 citation(s). The topic is also known as: geometric optics.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: The theory of interference and interferometers has been studied extensively in the field of geometrical optics, see as discussed by the authors for a survey of the basic properties of the electromagnetic field.
Abstract: Historical introduction 1. Basic properties of the electromagnetic field 2. Electromagnetic potentials and polarization 3. Foundations of geometrical optics 4. Geometrical theory of optical imaging 5. Geometrical theory of aberrations 6. Image-forming instruments 7. Elements of the theory of interference and interferometers 8. Elements of the theory of diffraction 9. The diffraction theory of aberrations 10. Interference and diffraction with partially coherent light 11. Rigorous diffraction theory 12. Diffraction of light by ultrasonic waves 13. Scattering from inhomogeneous media 14. Optics of metals 15. Optics of crystals 16. Appendices Author index Subject index.
4,312 citations
[...]
TL;DR: The mathematical justification of the theory on the basis of electromagnetic theory is described, and the applicability of this theory, or a modification of it, to other branches of physics is explained.
Abstract: The geometrical theory of diffraction is an extension of geometrical optics which accounts for diffraction. It introduces diffracted rays in addition to the usual rays of geometrical optics. These rays are produced by incident rays which hit edges, corners, or vertices of boundary surfaces, or which graze such surfaces. Various laws of diffraction, analogous to the laws of reflection and refraction, are employed to characterize the diffracted rays. A modified form of Fermat’s principle, equivalent to these laws, can also be used. Diffracted wave fronts are defined, which can be found by a Huygens wavelet construction. There is an associated phase or eikonal function which satisfies the eikonal equation. In addition complex or imaginary rays are introduced. A field is associated with each ray and the total field at a point is the sum of the fields on all rays through the point. The phase of the field on a ray is proportional to the optical length of the ray from some reference point. The amplitude varies in accordance with the principle of conservation of energy in a narrow tube of rays. The initial value of the field on a diffracted ray is determined from the incident field with the aid of an appropriate diffraction coefficient. These diffraction coefficients are determined from certain canonical problems. They all vanish as the wavelength tends to zero. The theory is applied to diffraction by an aperture in a thin screen diffraction by a disk, etc., to illustrate it. Agreement is shown between the predictions of the theory and various other theoretical analyses of some of these problems. Experimental confirmation of the theory is also presented. The mathematical justification of the theory on the basis of electromagnetic theory is described. Finally, the applicability of this theory, or a modification of it, to other branches of physics is explained.
2,881 citations
[...]
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.
1,788 citations
Book•
[...]
03 Jan 1992
TL;DR: In this paper, the directional distribution of radiant flux reflected from roughened surfaces is analyzed on the basis of geometrical optics, and the analysis successfully predicts the off-specular maxima in the reflection distribution which are observed experimentally and which emerge as the incidence angle increases.
Abstract: The directional distribution of radiant flux reflected from roughened surfaces is analyzed on the basis of geometrical optics. The analytical model assumes that the surface consists of small, randomly disposed, mirror-like facets. Specular reflection from these facets plus a diffuse component due to multiple reflections and/or internal scattering are postulated as the basic mechanisms of the reflection process. The effects of shadowing and masking of facets by adjacent facets are included in the analysis. The angular distributions of reflected flux predicted by the analysis are in very good agreement with experiment for both metallic and nonmetallic surfaces. Moreover, the analysis successfully predicts the off-specular maxima in the reflection distribution which are observed experimentally and which emerge as the incidence angle increases. The model thus affords a rational explanation for the off-specular peak phenomenon in terms of mutual masking and shadowing of mirror-like, specularly reflecting surface facets.
1,654 citations
[...]
TL;DR: In this paper, the directional distribution of radiant flux reflected from roughened surfaces is analyzed on the basis of geometrical optics, and the analysis successfully predicts the off-specular maxima in the reflection distribution which are observed experimentally and which emerge as the incidence angle increases.
Abstract: The directional distribution of radiant flux reflected from roughened surfaces is analyzed on the basis of geometrical optics. The analytical model assumes that the surface consists of small, randomly disposed, mirror-like facets. Specular reflection from these facets plus a diffuse component due to multiple reflections and/or internal scattering are postulated as the basic mechanisms of the reflection process. The effects of shadowing and masking of facets by adjacent facets are included in the analysis. The angular distributions of reflected flux predicted by the analysis are in very good agreement with experiment for both metallic and nonmetallic surfaces. Moreover, the analysis successfully predicts the off-specular maxima in the reflection distribution which are observed experimentally and which emerge as the incidence angle increases. The model thus affords a rational explanation for the off-specular peak phenomenon in terms of mutual masking and shadowing of mirror-like, specularly reflecting surface facets.
1,596 citations