scispace - formally typeset
Search or ask a question
Topic

Geopolymer

About: Geopolymer is a research topic. Over the lifetime, 6776 publications have been published within this topic receiving 157991 citations. The topic is also known as: geopolymers.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate the possibility of printing fibre-reinforced geopolymers which meet all the necessary properties in both the fresh and hardened states.
Abstract: This paper investigates the effect of polypropylene (PP) fibres on the fresh and hardened properties of 3D-printed fibre-reinforced geopolymer mortars. Different percentages of PP fibres ranging between 0.25% and 1.00% by volume were added to an optimised geopolymer mixture. All samples showed reasonable workability and extrudability. In addition, shape-retention ability in the fresh state was investigated as a major requirement for 3D-printing. The compressive strength of the printed specimens was tested in the hardened state in three loading directions, viz. longitudinal, perpendicular, and lateral. The flexural strength of samples was also tested in the longitudinal and lateral directions. In addition, the interlayer bond strength was investigated. Fibre addition seems to influence compressive strengths positively only when the loading is perpendicular to the interface plane. This is due to the preferential fibre alignment parallel to the direction of extrusion. The addition of fibre significantly enhanced the flexural performance of the printed samples. The use of fibre dosages of 0.75 and 1.00 vol % caused deflection-hardening behaviour of the 3D-printed geopolymers and, hence, a significantly higher fracture energy in comparison to specimens without fibre or with lower fibre content. However, an increase in the fibre volume caused some minor reduction in interlayer bond strength. With respect to properties in the fresh state, higher fibre volumes caused better shape-retention ability in the printed samples. The results indicate the possibility of printing fibre-reinforced geopolymers which meet all the necessary properties in both the fresh and hardened states.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the compressive strength, modulus of elasticity and stress-strain behaviour of ambient and heat-cured GPC and OPCC have been studied experimentally.
Abstract: This research focuses on elucidating the present knowledge gaps in geopolymer concrete's engineering properties, specifically its stress-strain behaviour. Geopolymer concrete (GPC) is an emerging alternative to ordinary Portland cement concrete (OPCC), and is produced via a polycondensation reaction between aluminosilicate source materials and an alkaline solution. As a relatively new material, many engineering properties of geopolymer concrete are still undetermined. In this paper, the compressive strength, modulus of elasticity and stress-strain behaviour of ambient and heat-cured GPC and OPCC have been studied experimentally. A total of 195 geopolymer concrete cylinders and 210 Portland cement concrete cylinders were tested for the above mentioned characteristics. Based on the experimental results, constitutive models describing the complete stress–strain behaviour in uniaxial compression have been developed for the low-calcium fly ash-based geopolymer concrete and the heat-cured Portland cement concrete.

143 citations

Journal ArticleDOI
Zuhua Zhang1, Xiao Yao1, Huajun Zhu1, Sudong Hua1, Yue Chen1 
TL;DR: In this paper, the influence of polypropylene (PP) fiber on the mechanical properties and volume stability of geopolymers was investigated, and the results of scanning electron microscopy (SEM) and the appearances of crack growths confirm that PP fiber can offer a bridging effect over the harmful pores and defects and change the expanding ways of cracks.
Abstract: To improve the environmental benefits and solve the problems of large shrinkage and high brittleness, the partial replacement of calcined kaolin by fly ash as a raw material for geopolymer synthesis and the influences of polypropylene (PP) fiber on the mechanical properties and volume stability were investigated. The results show that compressive strength of the geopolymer containing 33.3%(mass fraction) fly ash by steam curing at 80 °C for 6 d is improved by 35.5%. The 3-day compressive strength, flexural strength and impacting energy of geopolymers containing 0.05%PP fiber increase by 67.8%, 36.1% and 6.25%, while the shrinkage and modulus of compressibility decrease by 38.6% and 31.3%, respectively. The results of scanning electron microscopy (SEM) and the appearances of crack growths confirm that PP fiber can offer a bridging effect over the harmful pores and defects and change the expanding ways of cracks, resulting in a great improvement of strength and toughness.

143 citations

Journal ArticleDOI
TL;DR: In this article, the resistance to acid-induced corrosion of inorganic polymer (including fly ash geopolymer) binders is examined, by exposing specimens to nitric and sulphuric acids at pH values between 1 and 3, and measuring the corroded depth as a function of exposure time.
Abstract: The resistance to acid-induced corrosion of inorganic polymer (including “fly ash geopolymer”) binders is examined, by exposing specimens to nitric and sulphuric acids at pH values between 1 and 3, and measuring the corroded depth as a function of exposure time. The inorganic polymer binders are shown to be affected by acid attack by surface corrosion, which contradicts some previous claims of extremely high acid resistance in such binders. Corroded depth is shown to be a more sensitive measure of the performance of inorganic polymer binders than change in mass, because acid attack on the highly-connected aluminosilicate network of an inorganic polymer binder leads to the formation of an apparently intact, but physically weak and porous, reaction product layer on the sample surface, rather than complete disappearance of the binder as is often the case for other binder types. A strong correlation between permeability and resistance to acid attack is noted across a wide range of inorganic polymer formulations, including samples based on fly ash, ground granulated blast furnace slag, and mixtures of the two. The presence of calcium (supplied either by a Class C fly ash or by slag) and of high alkali concentrations each show a positive influence on acid resistance, which is attributed to the reduction in mass transport rates through the finer and more tortuous pore networks of such binders.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the density and strength of the FA-RHA mortars with RHA/FA mass ratios of 0/100, 20/80, 40/60, and 60/40 were tested.
Abstract: The geopolymer of fly ash (FA) and rice husk ash (RHA) was prepared. The burning temperature of rice husk, the RHA fineness and the ratio of FA to RHA were studied. The density and strength of the geopolymer mortars with RHA/FA mass ratios of 0/100, 20/80, 40/60, and 60/40 were tested. The geopolymers were activated with sodium hydroxide (NaOH), sodium silicate, and heat. It is revealed that the optimum burning temperature of RHA for making FA-RHA geopolymer is 690°C. The as-received FA and the ground RHA with 1%-5% retained on No.325 sieve are suitable source materials for making geopolymer, and the obtained compressive strengths are between 12.5-56.0 MPa and are dependent on the ratio of FA/RHA, the RHA fineness, and the ratio of sodium silicate to NaOH. Relatively high strength FA-RHA geopolymer mortars are obtained using a sodium silicate/NaOH mass ratio of 4.0, delay time before subjecting the samples to heat for 1 h, and heat curing at 60°C for 48 h.

142 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
80% related
Ultimate tensile strength
129.2K papers, 2.1M citations
79% related
Nanocomposite
71.3K papers, 1.9M citations
78% related
Corrosion
152.8K papers, 1.9M citations
75% related
Alloy
171.8K papers, 1.7M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,059
20221,744
2021990
2020891
2019752
2018658