scispace - formally typeset
Topic

Germanium

About: Germanium is a(n) research topic. Over the lifetime, 22212 publication(s) have been published within this topic receiving 382980 citation(s). The topic is also known as: Ge & element 32.
Papers
More filters

Book
12 Jul 1985-
Abstract: VOLUME ONE: Determination of Optical Constants: E.D. Palik, Introductory Remarks. R.F. Potter, Basic Parameters for Measuring Optical Properties. D.Y. Smith, Dispersion Theory, Sum Rules, and Their Application to the Analysis of Optical Data. W.R. Hunter, Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region. D.E. Aspnes, The Accurate Determination of Optical Properties by Ellipsometry. J. Shamir, Interferometric Methods for the Determination of Thin-Film Parameters. P.A. Temple, Thin-Film Absorplance Measurements Using Laser Colorimetry. G.J. Simonis, Complex Index of Refraction Measurements of Near-Millimeter Wavelengths. B. Jensen, The Quantum Extension of the Drude--Zener Theory in Polar Semiconductors. D.W. Lynch, Interband Absorption--Mechanisms and Interpretation. S.S. Mitra, Optical Properties of Nonmetallic Solids for Photon Energies below the Fundamental Band Gap. Critiques--Metals: D.W. Lynch and W.R. Hunter, Comments of the Optical Constants of Metals and an Introduction to the Data for Several Metals. D.Y. Smith, E. Shiles, and M. Inokuti, The Optical Properties of Metallic Aluminum. Critiques--Semiconductors: E.D. Palik, Cadium Telluride (CdTe). E.D. Palik, Gallium Arsenide (GaAs). A. Borghesi and G. Guizzetti, Gallium Phosphide (GaP). R.F. Potter, Germanium (Ge). E.D. Palik and R.T. Holm, Indium Arsenide (InAs). R.T. Holm, Indium Antimonide (InSb). O.J. Glembocki and H. Piller, Indium Phosphide (InP). G. Bauer and H. Krenn, Lead Selenide (PbSe). G. Guizzetti and A. Borghesi, Lead Sulfide (PbS). G. Bauer and H. Krenn, Lead Telluride (PbTe). D.F. Edwards, Silicon (Si). H. Piller, Silicon (Amorphous) (-Si). W.J. Choyke and E.D. Palik, Silicon Carbide (SiC). E.D. Palik and A. Addamiano, Zinc Sulfide (ZnS). Critiques--Insulators: D.J. Treacy, Arsenic Selenide (As 2 gt Se 3 gt ). D.J. Treacy, Arsenic Sulfide (As 2 gt S 3 gt ). D.F. Edwards and H.R. Philipp, Cubic Carbon (Diamond). E.D. Palik and W.R. Hunter, Litium Fluoride (LiF). E.D. Palik, Lithium Niobote (LiNbO 3 gt ). E.D. Palik, Potassium Chloride (KCl). H.R. Philipp, Silicon Dioxide (SiO 2 gt ), Type ( (Crystalline). H.R. Philipp, Silicon Dioxide (SiO 2 gt ) (Glass). gt H.R. Philipp, Silicon Monoxide (SiO) (Noncrystalline). H.R. Philipp, Silicon Nitride (Si 3 gt N 4 gt ) (Noncrystalline). J.E. Eldridge and E.D. Palik, Sodium Chloride (NaCl). M.W. Ribarsky, Titanium Dioxide (TiO 2 gt ) (Rutile).

17,477 citations


Journal ArticleDOI
09 Jan 1998-Science
TL;DR: Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.
Abstract: A method combining laser ablation cluster formation and vapor-liquid-solid (VLS) growth was developed for the synthesis of semiconductor nanowires. In this process, laser ablation was used to prepare nanometer-diameter catalyst clusters that define the size of wires produced by VLS growth. This approach was used to prepare bulk quantities of uniform single-crystal silicon and germanium nanowires with diameters of 6 to 20 and 3 to 9 nanometers, respectively, and lengths ranging from 1 to 30 micrometers. Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.

4,345 citations


Journal ArticleDOI
S. Cahangirov1, Mehmet Topsakal1, Ethem Aktürk1, Hasan Sahin1, Salim Ciraci1 
Abstract: First-principles calculations of structure optimization, phonon modes, and finite temperature molecular dynamics predict that silicon and germanium can have stable, two-dimensional, low-buckled, honeycomb structures. Similar to graphene, these puckered structures are ambipolar and their charge carriers can behave like a massless Dirac fermion due to their pi and pi(*) bands which are crossed linearly at the Fermi level. In addition to these fundamental properties, bare and hydrogen passivated nanoribbons of Si and Ge show remarkable electronic and magnetic properties, which are size and orientation dependent. These properties offer interesting alternatives for the engineering of diverse nanodevices.

2,289 citations


Journal ArticleDOI
R. N. Hall1
15 Jul 1952-Physical Review

2,229 citations


Journal ArticleDOI
01 Oct 1950-Physical Review
Abstract: The method of effective mass, extended to apply to gradual shifts in energy bands resulting from deformations of the crystal lattice, is used to estimate the interaction between electrons of thermal energy and the acoustical modes of vibration. The mobilities of electrons and holes are thus related to the shifts of the conduction and valence-bond (filled) bands, respectively, associated with dilations of longitudinal waves. The theory is checked by comparison of the sum of the shifts of the conduction and valence-bond bands, as derived from the mobilities, with the shift of the energy gap with dilation. The latter is obtained independently for silicon, germanium and tellurium from one or more of the following: (1) the change in intrinsic conductivity with pressure, (2) the change in resistance of an $n\ensuremath{-}p$ junction with pressure, and (3) the variation of intrinsic concentration with temperature and the thermal expansion coefficient. Higher mobilities of electrons and holes in germanium as compared with silicon are correlated with a smaller shift of energy gap with dilation.

2,013 citations


Network Information
Related Topics (5)
Silicon

196K papers, 3M citations

94% related
Indium

21.4K papers, 294.9K citations

92% related
Semiconductor

72.6K papers, 1.2M citations

92% related
Crystal

90K papers, 1.2M citations

92% related
Single crystal

59.6K papers, 870.8K citations

92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021328
2020469
2019560
2018615
2017613

Top Attributes

Show by:

Topic's top 5 most impactful authors

Eugene E. Haller

100 papers, 2.1K citations

Krishna C. Saraswat

78 papers, 4.4K citations

Lorenzo Colace

32 papers, 497 citations

Deren Yang

28 papers, 401 citations

Yee-Chia Yeo

27 papers, 313 citations