scispace - formally typeset
Search or ask a question

Showing papers on "Germination published in 2011"


Journal ArticleDOI
TL;DR: Increased research in understudied ecosystems, on key issues related to seed ecology, and on evolution of seed traits in nonweedy species is needed to more fully comprehend and plan for plant responses to global warming.
Abstract: At the core of plant regeneration, temperature and water supply are critical drivers for seed dormancy (initiation, break) and germination. Hence, global climate change is altering these environmental cues and will preclude, delay, or enhance regeneration from seeds, as already documented in some cases. Along with compromised seedling emergence and vigour, shifts in germination phenology will influence population dynamics, and thus, species composition and diversity of communities. Altered seed maturation (including consequences for dispersal) and seed mass will have ramifications on life history traits of plants. Predicted changes in temperature and precipitation, and thus in soil moisture, will affect many components of seed persistence in soil, e.g. seed longevity, dormancy release and germination, and soil pathogen activity. More/less equitable climate will alter geographic distribution for species, but restricted migratory capacity in some will greatly limit their response. Seed traits for weedy species could evolve relatively quickly to keep pace with climate change enhancing their negative environmental and economic impact. Thus, increased research in understudied ecosystems, on key issues related to seed ecology, and on evolution of seed traits in nonweedy species is needed to more fully comprehend and plan for plant responses to global warming.

760 citations


Book
26 Sep 2011
TL;DR: In this paper, the chemistry of seeds is discussed, and the relationship between plants and seeds is also discussed in terms of fertility, growth, development, and viability testing of seeds.
Abstract: Preface. Acknowledgments. Introduction. Reproductive processes in plants. Seed formation and development. The chemistry of seeds. Seed germination. Seed viability testing. Seed dormancy. Seed vigor and vigor tests. Seed longevity and deterioration. Seed production. Seed conditioning and handling. Seed enhancements. Seed certification. Seed testing. Seed pathology and pathological testing. Seed marketing. Seed legislation and law enforcement. Glossary. Index.

659 citations


Journal ArticleDOI
TL;DR: An integrated view on the early phase of seed germination is provided and it is shown that it is characterized by dynamic biomechanical changes together with very early alterations in transcript, protein, and hormone levels that set the stage for the later events.
Abstract: Most plant seeds are dispersed in a dry, mature state. If these seeds are non-dormant and the environmental conditions are favourable, they will pass through the complex process of germination. In this review, recent progress made with state-of-the-art techniques including genome-wide gene expression analyses that provided deeper insight into the early phase of seed germination, which includes imbibition and the subsequent plateau phase of water uptake in which metabolism is reactivated, is summarized. The physiological state of a seed is determined, at least in part, by the stored mRNAs that are translated upon imbibition. Very early upon imbibition massive transcriptome changes occur, which are regulated by ambient temperature, light conditions, and plant hormones. The hormones abscisic acid and gibberellins play a major role in regulating early seed germination. The early germination phase of Arabidopsis thaliana culminates in testa rupture, which is followed by the late germination phase and endosperm rupture. An integrated view on the early phase of seed germination is provided and it is shown that it is characterized by dynamic biomechanical changes together with very early alterations in transcript, protein, and hormone levels that set the stage for the later events. Early seed germination thereby contributes to seed and seedling performance important for plant establishment in the natural and agricultural ecosystem.

615 citations


Journal ArticleDOI
TL;DR: In this review, the roles of components of the spore germination machinery of C. perfringens and several Bacillus species and the bioinformatic analysis of germination proteins in the Bacillales and Clostridiales orders are discussed and models for the germination of spores of these two orders are proposed.

366 citations


Journal ArticleDOI
TL;DR: Investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field investigated how these mechanisms are seasonally coordinated, finding depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature.
Abstract: Seeds respond to environmental signals, tuning their dormancy cycles to the seasons and thereby determining the optimum time for plant establishment. The molecular regulation of dormancy cycling is unknown, but an extensive range of mechanisms have been identified in laboratory experiments. Using a targeted investigation of gene expression over the dormancy cycle of Arabidopsis seeds in the field, we investigated how these mechanisms are seasonally coordinated. Depth of dormancy and gene expression patterns were correlated with seasonal changes in soil temperature. The results were consistent with abscisic acid (ABA) signaling linked to deep dormancy in winter being repressed in spring concurrent with enhanced DELLA repression of germination as depth of dormancy decreased. Dormancy increased during winter as soil temperature declined and expression of ABA synthesis (NCED6) and gibberellic acid (GA) catabolism (GA2ox2) genes increased. This was linked to an increase in endogenous ABA that plateaus, but dormancy and DOG1 and MFT expression continued to increase. The expression of SNF1-related protein kinases, SnrK 2.1 and 2.4, also increased consistent with enhanced ABA signaling and sensitivity being modulated by seasonal soil temperature. Dormancy then declined in spring and summer. Endogenous ABA decreased along with positive ABA signaling as expression of ABI2, ABI4, and ABA catabolism (CYP707A2) and GA synthesis (GA3ox1) genes increased. However, during the low-dormancy phase in the summer, expression of transcripts for the germination repressors RGA and RGL2 increased. Unlike deep winter dormancy, this represson can be removed on exposure to light, enabling the completion of germination at the correct time of year.

277 citations


Journal ArticleDOI
TL;DR: Information is provided on metal(loid) homeostasis, detoxification and tolerance in relation to seed metabolism and performance, as well as their uptake upon seed imbibition and subsequent effects on seed germination.

275 citations


Journal ArticleDOI
TL;DR: In this article, a wheat microarray was used to analyze gene expression in embryos from mature seeds grown at lower and higher temperatures, and it was found that a wheat homolog of MOTHER OF FT and TFL1 (MFT) was upregulated after physiological maturity.
Abstract: Seed dormancy is an adaptive mechanism and an important agronomic trait. Temperature during seed development strongly affects seed dormancy in wheat (Triticum aestivum) with lower temperatures producing higher levels of seed dormancy. To identify genes important for seed dormancy, we used a wheat microarray to analyze gene expression in embryos from mature seeds grown at lower and higher temperatures. We found that a wheat homolog of MOTHER OF FT AND TFL1 (MFT) was upregulated after physiological maturity in dormant seeds grown at the lower temperature. In situ hybridization analysis indicated that MFT was exclusively expressed in the scutellum and coleorhiza. Mapping analysis showed that MFT on chromosome 3A (MFT-3A) colocalized with the seed dormancy quantitative trait locus (QTL) QPhs.ocs-3A.1. MFT-3A expression levels in a dormant cultivar used for the detection of the QTL were higher after physiological maturity; this increased expression correlated with a single nucleotide polymorphism in the promoter region. In a complementation analysis, high levels of MFT expression were correlated with a low germination index in T1 seeds. Furthermore, precocious germination of isolated immature embryos was suppressed by transient introduction of MFT driven by the maize (Zea mays) ubiquitin promoter. Taken together, these results suggest that MFT plays an important role in the regulation of germination in wheat.

274 citations


Journal ArticleDOI
TL;DR: In this article, nano-TiO2 particles, after short-term exposure and under their experimental conditions, delayed seed germination for the first 24h in both materials, and root elongation was affected only after treatment with the higher nano- TiO2 concentration.
Abstract: This study aimed to provide new information about phyto-toxicology of nano-TiO2 on plant systems. To contribute to the evaluation of the potential harmful effects of the nanoparticles on monocots and dicots we considered their effects on seed germination and root elongation applying a concentration range from 0.2 to 4.0‰ in the plants Zea mays L. and Vicia narbonensis L. Moreover, we achieved a genotoxicity study at cytological level in root meristems by means of traditional cytogenetic approach, to evidence possible alterations in mitotic activity, chromosomal aberrations, and micronuclei release. From these analyses it comes out that nano-TiO2 particles, after short-term exposure and under our experimental conditions, delayed germination progression for the first 24 h in both materials. Root elongation was affected only after treatment with the higher nano-TiO2 concentration. Further significant effects were detected showing mitotic index reduction and concentration-dependent increase in the aberration emergence that evidenced a nano-TiO2-induced genotoxic effect for both species.

260 citations


Journal ArticleDOI
TL;DR: It is suggested that concurrent selection on seed dormancy and resistance to microbial antagonists should result in distinct seed defence syndromes, and integrating seed defence and dormancy traits can provide new insights into selection on dormancy types, and will help elucidate major trends in seed ecology and evolution.
Abstract: Summary 1. Plant defence theory provides a robust framework for understanding interactions between plants and antagonists, and for interpreting broad patterns in the functional-trait composition of plant communities. However, this framework has been built almost entirely on traits expressed by seedlings and mature plants. 2. No equivalent seed defence theory exists that recognizes the distinct suite of natural enemies that seeds encounter, and the unique constraints to their response. Furthermore, most attention has been paid to insect and vertebrate seed predators active above ground, whereas microbes in soil also have large effects on seed survival, particularly for plants that recruit from soil seed banks. 3. We suggest that concurrent selection on seed dormancy and resistance to microbial antagonists should result in distinct seed defence syndromes. We predict that species with physical seed dormancy will rely on physical defences to exclude predators and pathogens, and rapid seed germination to escape pathogens at the emergence stage. In contrast, species with physiological seed dormancy will deploy a continuum of physical and chemical defences, depending on soil pathogen pressure and duration of seed persistence. Finally, seeds of some species persist in the soil in a non-dormant, imbibed state, and lack obvious chemical and physical defences. These seeds may be especially dependent upon protection from beneficial seed-inhabiting microbes. 4. Framing a general ‘seed defence theory’ may help to account for the distribution of seed dormancy types across ecosystems. We predict that physiological dormancy will be favoured in dry or well-drained environments where pathogen pressure is relatively low, germination cues are most unpredictable, and seedling recruitment success is most variable. In contrast, physical dormancy should be favoured in warm and moist environments where pathogen pressure is high, and where germination cues are a stronger predictor of recruitment success. Persistent, non-dormant seeds are restricted to relatively aseasonal environments where favourable conditions for recruitment can occur over most of the year. 5. Synthesis. Integrating seed defence and dormancy traits can provide new insights into selection on dormancy types, and will help elucidate major trends in seed ecology and evolution. Understanding how seeds are defended also may improve our ability to predict plant regeneration and help develop innovative management strategies for weedy and invasive species.

235 citations


Journal ArticleDOI
TL;DR: Seed dormancy, an adaptive trait that arose evolutionarily late, evolved by coopting existing genetic pathways regulating cellular phase transition and abiotic stress, suggesting that conserved mechanisms control transitions in cell identity in plants.
Abstract: Seed germination is a complex trait of key ecological and agronomic significance. Few genetic factors regulating germination have been identified, and the means by which their concerted action controls this developmental process remains largely unknown. Using publicly available gene expression data from Arabidopsis thaliana, we generated a condition-dependent network model of global transcriptional interactions (SeedNet) that shows evidence of evolutionary conservation in flowering plants. The topology of the SeedNet graph reflects the biological process, including two state-dependent sets of interactions associated with dormancy or germination. SeedNet highlights interactions between known regulators of this process and predicts the germination-associated function of uncharacterized hub nodes connected to them with 50% accuracy. An intermediate transition region between the dormancy and germination subdomains is enriched with genes involved in cellular phase transitions. The phase transition regulators SERRATE and EARLY FLOWERING IN SHORT DAYS from this region affect seed germination, indicating that conserved mechanisms control transitions in cell identity in plants. The SeedNet dormancy region is strongly associated with vegetative abiotic stress response genes. These data suggest that seed dormancy, an adaptive trait that arose evolutionarily late, evolved by coopting existing genetic pathways regulating cellular phase transition and abiotic stress. SeedNet is available as a community resource (http://vseed.nottingham.ac.uk) to aid dissection of this complex trait and gene function in diverse processes.

226 citations


Journal ArticleDOI
TL;DR: The data demonstrate that inhibition of CBF expression is likely a critical feature allowing cold to promote rather than inhibit germination and support a model in which CBFs act in parallel to a low-temperature signaling pathway in the regulation of dormancy.
Abstract: Summer annuals overwinter as seeds in the soil seed bank. This is facilitated by a cold-induced increase in dormancy during seed maturation followed by a switch to a state during seed imbibition in which cold instead promotes germination. Here, we show that the seed maturation transcriptome in Arabidopsis thaliana is highly temperature sensitive and reveal that low temperature during seed maturation induces several genes associated with dormancy, including DELAY OF GERMINATION1 (DOG1), and influences gibberellin and abscisic acid levels in mature seeds. Mutants lacking DOG1, or with altered gibberellin or abscisic acid synthesis or signaling, in turn show reduced ability to enter the deeply dormant states in response to low seed maturation temperatures. In addition, we find that DOG1 promotes gibberellin catabolism during maturation. We show that C-REPEAT BINDING FACTORS (CBFs) are necessary for regulation of dormancy and of GA2OX6 and DOG1 expression caused by low temperatures. However, the temperature sensitivity of CBF transcription is markedly reduced in seeds and is absent in imbibed seeds. Our data demonstrate that inhibition of CBF expression is likely a critical feature allowing cold to promote rather than inhibit germination and support a model in which CBFs act in parallel to a low-temperature signaling pathway in the regulation of dormancy.

Journal ArticleDOI
TL;DR: In this paper, the authors report the beneficial effect of multi-walled carbon nanotubes (MWCNTs) having diameter of ~30 nm on Brassica juncea (mustard) seeds.
Abstract: Nowadays an increasing application of nanotechnology in different fields has arisen an extensive debate about the effect of the engineered nanoparticles on environment. Phytotoxicity of nanoparticles has come into limelight in the last few years. However, very few studies have been done so far on the beneficial aspects of nanoparticles on plants. In this article, we report the beneficial effect of multi-walled carbon nanotubes (MWCNTs) having diameter of ~30 nm on Brassica juncea (mustard) seeds. Measurements of germination rate, T50 (time taken for 50% germination), shoot and root growth have shown encouraging results using low concentration of oxidized MWCNT (OMWCNT) treated seeds as compared to non-oxidized as well as high concentration OMWCNT treated seeds. For toxicity study we measured the germination index and relative root elongation, while conductivity test and infra-red spectra were also performed to study the overall effect of oxidized and non-oxidized nanotubes on mustard seeds and seedlings.

Journal ArticleDOI
TL;DR: In this article, the effect of pea seed imbibition with hydrogen peroxide (H(2)O(2)) on several oxidative features such as protein carbonylation and lipid peroxidation levels was investigated.
Abstract: In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels.

Journal ArticleDOI
Yanping Wang1, Lin Li1, Tiantian Ye1, Shujuan Zhao1, Zhao Liu1, Yu-Qi Feng1, Yan Wu1 
TL;DR: The study suggests that the interaction of ABA and cytokinin during seed germination and seedling growth can be mediated by the interplay of transcriptional regulators in Arabidopsis.
Abstract: Summary Abscisic acid (ABA) and cytokinin are key hormones controlling plant development. How ABA and cytokinin interplay to control the transition from a dry seed into a young seedling remains elusive. Here we undertook a gain-of-function genetic screen to identify ABA-insensitive mutants during seed germination in Arabidopsis using an estradiol-inducible approach. In the presence of estradiol, one of these mutants gim1 (germination insensitive to ABA mutant 1) exhibited an elevated level of cytokinin that was attributed to the estradiol-induced expression of AtIPT8 that encodes an isopentenyltransferase for the biosynthesis of cytokinins. Our data on OE-2 and Com-1 transgenic plants carrying the ectopically expressing AtIPT8 gene indicated that the elevation of cytokinin level was responsible for the ABA-insensitivity of gim1 seed germination. Further analyses on alterations of gene transcriptomes in the gim1 mutant demonstrated that the expression of some ABA-inducible genes, including ABI5, was reduced, and could not be restored by exogenous ABA treatment. Moreover, we also failed to observe the ABA-mediated repression of a family of cytokinin signal transducers and transcription repressors called type-A ARR4, ARR5 and ARR6 in the gim1 seedlings. Further analysis demonstrated that type-A ARR4, ARR5 and ARR6 could negatively regulate ABI5 expression, and the physical interaction of ABI5 and type-A ARR4, ARR5 and ARR6 proteins was detected. In summary, our study suggests that the interaction of ABA and cytokinin during seed germination and seedling growth can be mediated by the interplay of transcriptional regulators in Arabidopsis.

Journal ArticleDOI
TL;DR: It is proposed that targeted mRNA oxidation during dry after-ripening of dormant seeds could be a process that governs cell signaling toward germination in the early steps of seed imbibition.
Abstract: After-ripening is the mechanism by which dormant seeds become nondormant during their dry storage after harvest. The absence of free water in mature seeds does not allow detectable metabolism; thus, the processes associated with dormancy release under these conditions are largely unknown. We show here that sunflower (Helianthus annuus) seed alleviation of dormancy during after-ripening is associated with mRNA oxidation and that this oxidation is prevented when seeds are maintained dormant. In vitro approaches demonstrate that mRNA oxidation results in artifacts in cDNA–amplified fragment length polymorphim analysis and alters protein translation. The oxidation of transcripts is not random but selective, and, using microarrays, we identified 24 stored mRNAs that became highly oxidized during after-ripening. Oxidized transcripts mainly correspond to genes involved in responses to stress and in cell signaling. Among them, protein phosphatase 2C PPH1, mitogen-activated protein kinase phosphatase 1, and phenyl ammonia lyase 1 were identified. We propose that targeted mRNA oxidation during dry after-ripening of dormant seeds could be a process that governs cell signaling toward germination in the early steps of seed imbibition.

Journal ArticleDOI
TL;DR: Osmopriming strengthens the antioxidant system and increases seed germination potential, resulting in an increased stress tolerance in germinating seeds, however, it may diminish in relatively older seedlings.

Journal ArticleDOI
TL;DR: It is demonstrated that seaweed liquid extract could serve as an alternative biofertilizer as is eco-friendly, cheaper, deliver substantial economic and environmental benefits to farmers.
Abstract: The effect of seaweed liquid extract (SLE) of Sargassum wightii on germination, growth and yield of Triticum aestivum var. Pusa Gold was studied. Application of a lower concentration (20%) of SLE enhanced the percentage of seed germination, growth and yield, as measured by kernel number and seed dry weight. All growth and yield parameters were found to be highest at the 20% concentration SLE treatment. Total (100%) seed germination was observed for the 20% concentration SLE treatment, an 11% increase over the control. The present study demonstrated that seaweed liquid extract could serve as an alternative biofertilizer as is eco-friendly, cheaper, deliver substantial economic and environmental benefits to farmers.

Journal ArticleDOI
TL;DR: It is demonstrated that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 during seed germination.
Abstract: Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis.

Journal ArticleDOI
TL;DR: Analysis of double, triple, and quadruple mutants showed that SDP1L is responsible for virtually all of the residual TAG hydrolysis present in sdp1 seedlings, and that this hydrolytic activity is important but not essential for seed germination or seedling establishment.
Abstract: Triacylglycerol (TAG) is a major storage reserve in many plant seeds. We previously identified a TAG lipase mutant called sugar-dependent1 (sdp1) that is impaired in TAG hydrolysis following Arabidopsis (Arabidopsis thaliana) seed germination (Eastmond, 2006). The aim of this study was to identify additional lipases that account for the residual TAG hydrolysis observed in sdp1. Mutants were isolated in three candidate genes (SDP1-LIKE [SDP1L], ADIPOSE TRIGLYCERIDE LIPASE-LIKE, and COMPARATIVE GENE IDENTIFIER-58-LIKE). Analysis of double, triple, and quadruple mutants showed that SDP1L is responsible for virtually all of the residual TAG hydrolysis present in sdp1 seedlings. Oil body membranes purified from sdp1 sdp1L seedlings were deficient in TAG lipase activity but could still hydrolyze di- and monoacylglycerol. SDP1L is expressed less strongly than SDP1 in seedlings. However, SDP1L could partially rescue TAG breakdown in sdp1 seedlings when expressed under the control of the SDP1 or 35S promoters and in vitro assays showed that both SDP1 and SDP1L can hydrolyze TAG, in preference to diacylglycerol or monoacylglycerol. Seed germination was slowed in sdp1 sdp1L and postgerminative seedling growth was severely retarded. The frequency of seedling establishment was also reduced, but sdp1 sdp1L was not seedling lethal under normal laboratory growth conditions. Our data show that together SDP1 and SDP1L account for at least 95% of the rate of TAG hydrolysis in Arabidopsis seeds, and that this hydrolysis is important but not essential for seed germination or seedling establishment.

Journal ArticleDOI
TL;DR: Results indicate that over-expression of tau class SbGST gene in transgenic tobacco leads to enhanced seed germination and growth under salt stress and GST is a potential candidate gene to be used in genetic engineering for enhancing abiotic stress tolerance.
Abstract: Tau class glutathione transferases (GSTU) genes are plant specific, induced by different abiotic stress, and important for protecting plants against oxidative damage. GST gene was isolated using 5' RACE from an extreme halophyte Salicornia brachiata, cloned, sequenced and its protein structure was predicted. Transcript profiling of SbGST gene expression was studied under different abiotic stress conditions and plant growth regulator treatments, viz. salt, cold, drought, ABA and salicylic acid, with time period point and concentration point. The expression of SbGST gene was up-regulated in all stress conditions, except SA treatment. Seed germination percentage, GST enzyme assay, fresh weight and other growth parameters (root length, shoot length and leaf area) were studied and results indicate that over-expression of SbGST gene in transgenic tobacco leads to enhanced seed germination and growth under salt stress. Transgenic lines were evaluated for their performance under salt stress and tobacco plants over-expressing SbGST showed higher seed germination and survival compared to wild type. These results confirm that expression of SbGST gene is up-regulated by different stresses and over-expression of tau class SbGST gene in transgenic tobacco plays a vital role in abiotic stress tolerance. SbGST gene expressed conspicuously under salt stress leading to enhance seed germination and better growth. Furthermore, GST is a potential candidate gene to be used in genetic engineering for enhancing abiotic stress tolerance.

Journal ArticleDOI
TL;DR: The results suggest that OsIRO2 is synchronously expressed with genes involved in Fe homeostasis, and performs a crucial function in regulation not only of Fe uptake from soil but also Fe transport during germination and Fe translocation to grain during seed maturation.
Abstract: Iron (Fe) deficiency, a worldwide agricultural problem on calcareous soil with low Fe availability, is also a major human nutritional deficit. Plants induce Fe acquisition systems under conditions of low Fe availability. Previously, we reported that an Fe-deficiency-inducible basic helix-loop-helix (bHLH) transcription factor, OsIRO2, is responsible for regulation of the genes involved in Fe homeostasis in rice. Using promoter-GUS transformants, we showed that OsIRO2 is expressed throughout a plant’s lifetime in a spatially and temporally similar manner to the genes OsNAS1, OsNAS2 and TOM1, which is involved in Fe absorption and translocation. During germination, OsIRO2 expression was detected in embryos. OsIRO2 expression in vegetative tissues was restricted almost exclusively to vascular bundles of roots and leaves, and to the root exodermis under Fe-sufficient conditions, and expanded to all tissues of roots and leaves in response to Fe deficiency. OsIRO2 expression was also detected in flowers and developing seeds. Plants overexpressing OsIRO2 grew better, and OsIRO2-repressed plants showed poor growth compared to non-transformant rice after germination. OsIRO2 overexpression also resulted in improved tolerance to low Fe availability in calcareous soil. In addition to increased Fe content in shoots, the overexpression plants accumulated higher amounts of Fe in seeds than non-transformants when grown on calcareous soil. These results suggest that OsIRO2 is synchronously expressed with genes involved in Fe homeostasis, and performs a crucial function in regulation not only of Fe uptake from soil but also Fe transport during germination and Fe translocation to grain during seed maturation.

Journal ArticleDOI
TL;DR: The present results provide a model system to screen for natural compounds able to counteract the deleterious effects of lead, and Antioxidant enzymes activities were generally significantly increased in the presence of lead in a dose-dependent manner.

Journal ArticleDOI
TL;DR: The results of the present study suggest that the PGPR strains used as fresh suspensions and powdered formulations may have commercial potential in plant growth promotion and in management of rice bacterial leaf blight disease.

Journal ArticleDOI
TL;DR: The beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean is reported here.
Abstract: Experiments were conducted to study the effect of static magnetic fields on the seeds of soybean (Glycine max (L.) Merr. var: JS-335) by exposing the seeds to different magnetic field strengths from 0 to 300 mT in steps of 50 mT for 30, 60, and 90 min. Treatment with magnetic fields improved germination-related parameters like water uptake, speed of germination, seedling length, fresh weight, dry weight and vigor indices of soybean seeds under laboratory conditions. Improvement over untreated control was 5-42% for speed of germination, 4-73% for seedling length, 9-53% for fresh weight, 5-16% for dry weight, and 3-88% and 4-27% for vigor indices I and II, respectively. Treatment of 200 mT (60 min) and 150 mT (60 min), which were more effective than others in increasing most of the seedling parameters, were further explored for their effect on plant growth, leaf photosynthetic efficiency, and leaf protein content under field conditions. Among different growth parameters, leaf area, and leaf fresh weight showed maximum enhancement (more than twofold) in 1-month-old plants. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at the J-I-P phase. The total soluble protein map (SDS-polyacrylamide gel) of leaves showed increased intensities of the bands corresponding to a larger subunit (53 KDa) and smaller subunit (14 KDa) of Rubisco in the treated plants. We report here the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean.

Journal ArticleDOI
TL;DR: DOG1 expression is associated with seed‐maturation temperature effects on germination and predicted dormancy better than expression of genes involved in ABA metabolism, although elimination of the synthesis of phytohormone abscisic acid (ABA) results in the elimination of maternalTemperature effects on dormancy.
Abstract: Seasonal germination timing of Arabidopsis thaliana strongly influences overall life history expression and is the target of intense natural selection. This seasonal germination timing depends strongly on the interaction between genetics and seasonal environments both before and after seed dispersal. DELAY OF GERMINATION 1 (DOG1) is the first gene that has been identified to be associated with natural variation in primary dormancy in A. thaliana. Here, we report interaccession variation in DOG1 expression and document that DOG1 expression is associated with seed-maturation temperature effects on germination; DOG1 expression increased when seeds were matured at low temperature, and this increased expression was associated with increased dormancy of those seeds. Variation in DOG1 expression suggests a geographical structure such that southern accessions, which are more dormant, tend to initiate DOG1 expression earlier during seed maturation and achieved higher expression levels at the end of silique development than did northern accessions. Although elimination of the synthesis of phytohormone abscisic acid (ABA) results in the elimination of maternal temperature effects on dormancy, DOG1 expression predicted dormancy better than expression of genes involved in ABA metabolism.

Journal ArticleDOI
TL;DR: The use of screening assays as part of a tiered approach for evaluating environmental impacts of antibiotics can provide insight into relative species sensitivity and serve as a basis by which to screen the potential for toxic effects of novel compounds to plants.
Abstract: We applied a screening-level phytotoxicity assay to evaluate the effects of 10 antibiotics (at concentrations ranging from 1 to 10,000 μg/L) on germination and early plant growth using three plant species: lettuce (Lactuca sativa), alfalfa (Medicago sativa), and carrot (Daucus carota) The range of phytotoxicity of the antibiotics was large, with EC25s ranging from 39 μg/L to >10,000 μg/L Chlortetracycline, levofloxacin, and sulfamethoxazole were the most phytotoxic antibiotics D carota was the most sensitive plant species, often by an order of magnitude or more, followed by L sativa and then M sativa Plant germination was insensitive to the antibiotics, with no significant decreases up to the highest treatment concentration of 10,000 μg/L Compared with shoot and total length measurements, root elongation was consistently the most sensitive end point Overall, there were few instances where measured soil concentrations, if available in the publicly accessible literature, would be expected to exceed the effect concentrations of the antibiotics evaluated in this study The use of screening assays as part of a tiered approach for evaluating environmental impacts of antibiotics can provide insight into relative species sensitivity and serve as a basis by which to screen the potential for toxic effects of novel compounds to plants

Journal ArticleDOI
TL;DR: P. funiculosum LHL06 has significantly ameliorated the adverse effects of salinity induced abiotic stress, and re-programmed soybean to higher growth and isoflavone biosynthesis.


Journal ArticleDOI
TL;DR: In this article, it was shown that the embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation.
Abstract: Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes.