scispace - formally typeset
Search or ask a question
Topic

Giant retinal ganglion cells

About: Giant retinal ganglion cells is a research topic. Over the lifetime, 1744 publications have been published within this topic receiving 101231 citations.


Papers
More filters
Journal ArticleDOI
08 Feb 2002-Science
TL;DR: It is shown that retinal ganglion cells innervating the SCN are intrinsically photosensitive, and depolarized in response to light even when all synaptic input from rods and cones was blocked.
Abstract: Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.

3,052 citations

Journal ArticleDOI
TL;DR: The spatial distribution of presumed ganglion cells and displaced amacrine cells in unstained whole mounts of six young normal human retinas whose photoreceptor distributions had previously been characterized was quantified, suggesting meridianal differences in convergence onto individual ganglION cells.
Abstract: We quantified the spatial distribution of presumed ganglion cells and displaced amacrine cells in unstained whole mounts of six young normal human retinas whose photoreceptor distributions had previously been characterized. Cells with large somata compared to their nuclei were considered ganglion cells; cells with small somata relative to their nuclei were considered displaced amacrine cells. Within the central area, ganglion cell densities reach 32,000-38,000 cells/mm2 in a horizontally oriented elliptical ring 0.4-2.0 mm from the foveal center. In peripheral retina, densities in nasal retina exceed those at corresponding eccentricities in temporal retina by more than 300%; superior exceeds inferior by 60%. Displaced amacrine cells represented 3% of the total cells in central retina and nearly 80% in the far periphery. A twofold range in the total number of ganglion cells (0.7 to 1.5 million) was largely explained by a similar range in ganglion cell density in different eyes. Cone and ganglion cell number were not correlated, and the overall cone:ganglion cell ratio ranged from 2.9 to 7.5 in different eyes. Peripheral cones and ganglion cells have different topographies, thus suggesting meridianal differences in convergence onto individual ganglion cells. Low convergence of foveal cones onto individual ganglion cells is an important mechanism for preserving high resolution at later stages of neural processing. Our improved estimates for the density of central ganglion cells allowed us to ask whether there are enough ganglion cells for each cone at the foveal center to have a direct line to the brain. Our calculations indicate that 1) there are so many ganglion cells relative to cones that a ratio of only one ganglion cell per foveal cone would require fibers of Henle radiating toward rather than away from the foveal center; and 2) like the macaque, the human retina may have enough ganglion cells to transmit the information afforded by closely spaced foveal cones to both ON- and OFF-channels. Comparison of ganglion cell topography with the visual field representation in V1 reveals similarities consistent with the idea that cortical magnification is proportional to ganglion cell density throughout the visual field.

1,653 citations

Journal ArticleDOI
17 Feb 2005-Nature
TL;DR: An anatomically distinct population of ‘giant’, melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field.
Abstract: Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the putative photopigment melanopsin and by signalling gross changes in light intensity serve the subconscious, 'non-image-forming' functions of circadian photoentrainment and pupil constriction. Here we show an anatomically distinct population of 'giant', melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field. The intrinsic, rod and (L + M) cone-derived light responses combine in these giant cells to signal irradiance over the full dynamic range of human vision. In accordance with cone-based colour opponency, the giant cells project to the lateral geniculate nucleus, the thalamic relay to primary visual cortex. Thus, in the diurnal trichromatic primate, 'non-image-forming' and conventional 'image-forming' retinal pathways are merged, and the melanopsin-based signal might contribute to conscious visual perception.

1,200 citations

Journal ArticleDOI
TL;DR: The unique inner retinal localization of melanopsin suggests that it is not involved in image formation but rather may mediate nonvisual photoreceptive tasks, such as the regulation of circadian rhythms and the acute suppression of pineal melatonin.
Abstract: Here we report the identification of a novel human opsin, melanopsin, that is expressed in cells of the mammalian inner retina. The human melanopsin gene consists of 10 exons and is mapped to chromosome 10q22. This chromosomal localization and gene structure differs significantly from that of other human opsins that typically have four to seven exons. A survey of 26 anatomical sites indicates that, in humans, melanopsin is expressed only in the eye. In situ hybridization histochemistry shows that melanopsin expression is restricted to cells within the ganglion and amacrine cell layers of the primate and murine retinas. Notably, expression is not observed in retinal photoreceptor cells, the opsin-containing cells of the outer retina that initiate vision. The unique inner retinal localization of melanopsin suggests that it is not involved in image formation but rather may mediate nonvisual photoreceptive tasks, such as the regulation of circadian rhythms and the acute suppression of pineal melatonin. The anatomical distribution of melanopsin-positive retinal cells is similar to the pattern of cells known to project from the retina to the suprachiasmatic nuclei of the hypothalamus, a primary circadian pacemaker.

1,183 citations

Journal ArticleDOI
TL;DR: Three distinct morphological types of cat retinal ganglion cells have been identified and categorized as α, β and γ and these cells have dendritic field diameters from 180 to 1000 μm.
Abstract: 1 Three distinct morphological types of cat retinal ganglion cells have been identified and categorized as α, β and γ Alpha ganglion cells have dendritic field diameters from 180 to 1000 μm; β, about 25 to 300 μm; γ, 180 to 800 μm, possibly more 2 The dimensions of the α and β ganglion cell dendritic fields increase monotonically from the central area outwards to the periphery; those of the γ cells do not Seemingly a spectrum of sizes of the γ cells is found at most locations in the retina 3 All three morphological types of ganglion cells are found in the central area 4 Possible further anatomical types of ganglion cells are discussed Correlations are suggested between the morphological category α cells and the physiological class Y cells; between β cells and the X cells and between the γ cells and the W cells

903 citations


Network Information
Related Topics (5)
Retina
28K papers, 1.2M citations
87% related
Visual cortex
18.8K papers, 1.2M citations
87% related
Neuron
22.5K papers, 1.3M citations
79% related
Neurotransmission
19.6K papers, 1.1M citations
79% related
Long-term potentiation
16.3K papers, 1.2M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
202223
20193
20182
201724
201635