scispace - formally typeset
Search or ask a question
Topic

Gibberellic acid

About: Gibberellic acid is a research topic. Over the lifetime, 6597 publications have been published within this topic receiving 109294 citations. The topic is also known as: GIBBERELLIN A3.


Papers
More filters
Journal ArticleDOI
TL;DR: Gibberellic acid enhances the synthesis of alpha-amylase in isolated aleurone layers of barley-seeds and enhances the formation of ribonuclease which increases linearly over a 48 hour period.
Abstract: Gibberellic acid enhances the synthesis of α-amylase in isolated aleurone layers of barley-seeds (Hordeum vulgare var. Himalaya). In the presence of 20 mm calcium chloride the amount of enzyme obtained from isolated aleurone layers is quantitatively comparable to that of the half-seeds used in earlier studies. After a lag period of 6 to 8 hours enzyme is produced at a linear rate. Gibberellic acid does not merely trigger α-amylase synthesis, but it is continuously required during the period of enzyme formation. Enzyme synthesis is inhibited by inhibitors of protein and RNA synthesis. Small amounts of actinomycin D differentially inhibit enzyme release and enzyme synthesis suggesting 2 distinct processes. Gibberellic acid similarly enhances the formation of ribonuclease which increases linearly over a 48 hour period. During the first 24 hours the enzyme is retained by the aleurone cells and this is followed by a rapid release of ribonuclease during the next 24 hour period. The capacity to release the enzyme is generated between 20 and 28 hours after the addition of the hormone. Ribonuclease formation is inhibited by inhibitors of protein and RNA synthesis. These inhibitors also prevent the formation of the release mechanism if added at the appropriate moment.

585 citations

Journal ArticleDOI
TL;DR: The participation of superoxide radicals, hydrogen peroxide, and hydroxyl radicals in ROI metabolism was demonstrated with specific in vivo assays, suggesting ROI production by germinating seeds represents an active, developmentally controlled physiological function, presumably for protecting the emerging seedling against attack by pathogens.
Abstract: Germination of radish (Raphanus sativus cv Eterna) seeds can be inhibited by far-red light (high-irradiance reaction of phytochrome) or abscisic acid (ABA). Gibberellic acid (GA3) restores full germination under far-red light. This experimental system was used to investigate the release of reactive oxygen intermediates (ROI) by seed coats and embryos during germination, utilizing the apoplastic oxidation of 2′,7′-dichlorofluorescin to fluorescent 2′,7′-dichlorofluorescein as an in vivo assay. Germination in darkness is accompanied by a steep rise in ROI release originating from the seed coat (living aleurone layer) as well as the embryo. At the same time as the inhibition of germination, far-red light and ABA inhibit ROI release in both seed parts and GA3 reverses this inhibition when initiating germination under far-red light. During the later stage of germination the seed coat also releases peroxidase with a time course affected by far-red light, ABA, and GA3. The participation of superoxide radicals, hydrogen peroxide, and hydroxyl radicals in ROI metabolism was demonstrated with specific in vivo assays. ROI production by germinating seeds represents an active, developmentally controlled physiological function, presumably for protecting the emerging seedling against attack by pathogens.

553 citations

Journal ArticleDOI
TL;DR: Data support the notion that ABI5 acts as the final common repressor of germination in response to changes in ABA and GA levels, and could be recapitulated by the addition of a SnRK2 protein kinase to the A BI5 overexpression line.
Abstract: Seed germination is antagonistically controlled by the phytohormones gibberellic acid (GA) and abscisic acid (ABA). GA promotes seed germination by enhancing the proteasome-mediated destruction of RGL2 (for RGA-LIKE2), a key DELLA factor repressing germination. By contrast, ABA blocks germination by inducing ABI5 (for ABA-INSENSITIVE5), a basic domain/leucine zipper transcription factor repressing germination. Decreased GA synthesis leads to an increase in endogenous ABA levels through a stabilized RGL2, a process that may involve XERICO, a RING-H2 zinc finger factor promoting ABA synthesis. In turn, increased endogenous ABA synthesis is necessary to elevate not only ABI5 RNA and protein levels but also, critically, those of RGL2. Increased ABI5 protein is ultimately responsible for preventing seed germination when GA levels are reduced. However, overexpression of ABI5 was not sufficient to repress germination, as ABI5 activity requires phosphorylation. The endogenous ABI5 phosphorylation and inhibition of germination could be recapitulated by the addition of a SnRK2 protein kinase to the ABI5 overexpression line. In sleepy1 mutant seeds, RGL2 overaccumulates; germination of these seeds can occur under conditions that produce low ABI5 expression. These data support the notion that ABI5 acts as the final common repressor of germination in response to changes in ABA and GA levels.

422 citations

Journal ArticleDOI
TL;DR: Results indicated that the heterologous Arabidopsis CBF1 can confer water deficit resistance in transgenic tomato plants.
Abstract: A DNA cassette containing an Arabidopsis C repeat/dehydration-responsive element binding factor 1 (CBF1) cDNA and a nos terminator, driven by a cauliflower mosaic virus 35S promoter, was transformed into the tomato (Lycopersicon esculentum) genome. These transgenic tomato plants were more resistant to water deficit stress than the wild-type plants. The transgenic plants exhibited growth retardation by showing dwarf phenotype, and the fruit and seed numbers and fresh weight of the transgenic tomato plants were apparently less than those of the wild-type plants. Exogenous gibberellic acid treatment reversed the growth retardation and enhanced growth of transgenic tomato plants, but did not affect the level of water deficit resistance. The stomata of the transgenic CBF1 tomato plants closed more rapidly than the wild type after water deficit treatment with or without gibberellic acid pretreatment. The transgenic tomato plants contained higher levels of Pro than those of the wild-type plants under normal or water deficit conditions. Subtractive hybridization was used to isolate the responsive genes to heterologous CBF1 in transgenic tomato plants and the CAT1 (CATALASE1) was characterized. Catalase activity increased, and hydrogen peroxide concentration decreased in transgenic tomato plants compared with the wild-type plants with or without water deficit stress. These results indicated that the heterologous Arabidopsis CBF1 can confer water deficit resistance in transgenic tomato plants.

419 citations

Journal ArticleDOI
TL;DR: It is shown that BR rescues the germination phenotype of severe GA biosynthetic mutants and of the GA-insensitive mutant sleepy1, and this result shows that BR stimulates germination and raises the possibility that BR is needed for normal germination.
Abstract: This paper presents evidence that plant brassinosteroid (BR) hormones play a role in promoting germination. It has long been recognized that seed dormancy and germination are regulated by the plant hormones abscisic acid (ABA) and gibberellin (GA). These two hormones act antagonistically with each other. ABA induces seed dormancy in maturing embryos and inhibits germination of seeds. GA breaks seed dormancy and promotes germination. Severe mutations in GA biosynthetic genes in Arabidopsis, such as ga1-3, result in a requirement for GA application to germinate. Whereas previous work has shown that BRs play a critical role in controlling cell elongation, cell division, and skotomorphogenesis, no germination phenotypes have been reported in BR mutants. We show that BR rescues the germination phenotype of severe GA biosynthetic mutants and of the GA-insensitive mutant sleepy1. This result shows that BR stimulates germination and raises the possibility that BR is needed for normal germination. If true, we would expect to detect a germination phenotype in BR mutants. We found that BR mutants exhibit a germination phenotype in the presence of ABA. Germination of both the BR biosynthetic mutant det2-1 and the BR-insensitive mutant bri1-1 is more strongly inhibited by ABA than is germination of wild type. Thus, the BR signal is needed to overcome inhibition of germination by ABA. Taken together, these results point to a role for BRs in stimulating germination.

412 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
94% related
Germination
51.9K papers, 877.9K citations
91% related
Auxin
10.7K papers, 502.6K citations
91% related
Seedling
28.6K papers, 478.2K citations
88% related
Abscisic acid
12.8K papers, 587K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023203
2022406
2021133
2020153
2019165
2018196