scispace - formally typeset
Search or ask a question
Topic

Gibberellic acid

About: Gibberellic acid is a research topic. Over the lifetime, 6597 publications have been published within this topic receiving 109294 citations. The topic is also known as: GIBBERELLIN A3.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that MC application could reduce endogenous GA levels in cotton through controlled GA biosynthetic and metabolic genes expression, which might inhibit cell elongation, thereby shortening the internode and reducing plant height.

50 citations

Journal ArticleDOI
TL;DR: The results indicate that apart from the influence on the shoot emergence, the GAs may stimulate the photosynthetic activity from the beginning of shoot growth and are thus responsible for the enhancement of callas flower yield.
Abstract: The effect of gibberellic acid (GA3) on the carbohydrate accumulation in relation to vegetative growth of Zantedeschia ‘Black Magic’ plants undergoing transition to flowering was investigated. In response to GA treatment the carbohydrate level increased independently of earlier stimulation of shoot emergence. Under vegetative growth stage the content of reducing sugars of leaf blades was 2.5-fold higher than in control plants, and suggests the stimulation of photosynthetic activity. The changes observed during the flowering, in principle noted in petiole tissues, support the GA-effect on assimilate transport to the sink organs. Moreover, the high level of non-structural carbohydrates in petiole tissues, in particular reducing sugars, can be an effect of photosynthetic activity of these organs and/or essential for osmoregulation and high turgor pressure. The results indicate that apart from the influence on the shoot emergence, the GAs may stimulate the photosynthetic activity from the beginning of shoot growth and are thus responsible for the enhancement of callas flower yield.

50 citations

Journal ArticleDOI
01 Jan 1978-Planta
TL;DR: It is suggested that a polar gibberellin is synthesized by G2 plants in SD, which promotes shoot growth and meristematic activity in the shoot apex, preventing senescence.
Abstract: In an early-flowering line of pea (G2) apical senescence occurs only in long days (LD), while growth in short days (SD) is indeterminate. In SD, G2 plants are known to produce a graft-transmissible substance which delays apical senescence in related lines that are photoperiod-insensitive with regard to apical senescence. Gibberellic acid (GA3) applied to the apical bud of G2 plants in LD delayed apical senescence indefinitely, while N6-benzyladenine and α-naphthaleneacetic acid were ineffective. Of the gibberellins native to pea, GA9 had no effect whereas GA20 had a moderate senescence-delaying effect. [3H]GA9 metabolism in intact leaves of G2 plants was inhibited by LD and was restored by placing the plants back in SD. Leaves of photoperiod-insensitive lines (I-types) metabolized GA9 readily regardless of photoperiod, but the metabolites differed qualitatively from those in G2 leaves. A polar GA9 metabolite, GAE, was found only in G2 plants in SD. The level of GA-like substances in methanol extracts from G2 plants dropped about 10-fold after the plants were moved from SD to LD; it was restored by transferring the plants back to SD. A polar zone of these GA-like materials co-chromatographed with GAE. It is suggested that a polar gibberellin is synthesized by G2 plants in SD; this gibberellin promotes shoot growth and meristematic activity in the shoot apex, preventing senescence.

50 citations

Journal ArticleDOI
TL;DR: Based on all growth and physiological data, Spd tended to be more effective than A3 in improving salt tolerance in both rice cultivars and Salt-stressed seedlings grown from seeds primed with these growth regulators also possessed higher phenolic contents and greater antioxidant capacity than the control seedlings.
Abstract: This study was carried out to elucidate the spermidine (Spd) and gibberellic acid (GA3) priming-induced physiological and biochemical changes responsible for induction of salinity tolerance in two rice (Oryza sativa L.) cultivars, namely ‘Niewdam Gs. no. 00621’ (salt tolerant) and ‘KKU-LLR-039’ (salt sensitive). The seeds of the two cultivars were primed separately with distilled water, 1 mM Spd or 0.43 mM GA3. Primed seeds were germinated and the resultant seedlings were hydroponically grown for 14 days before being exposed to salinity stress (150 mM NaCl) for 10 days. Seed priming with Spd or GA3 slightly improved salt-induced reductions in growth, anthocyanin and chlorophyll contents of the seedlings. Salt stress induced pronounced increases in Na+/K+ ratio, proline and H2O2 contents, particularly in the sensitive cultivar. The levels of these salt-sensitivity physiological indicators tended to be mitigated by priming with Spd and GA3. Salt-stressed seedlings grown from seeds primed with these growth regulators also possessed higher phenolic contents and greater antioxidant capacity than the control seedlings. Based on all growth and physiological data, Spd tended to be more effective than A3 in improving salt tolerance in both rice cultivars.

49 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
94% related
Germination
51.9K papers, 877.9K citations
91% related
Auxin
10.7K papers, 502.6K citations
91% related
Seedling
28.6K papers, 478.2K citations
88% related
Abscisic acid
12.8K papers, 587K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023203
2022406
2021133
2020153
2019165
2018196