scispace - formally typeset
Search or ask a question
Topic

Gibberellic acid

About: Gibberellic acid is a research topic. Over the lifetime, 6597 publications have been published within this topic receiving 109294 citations. The topic is also known as: GIBBERELLIN A3.


Papers
More filters
Journal ArticleDOI
TL;DR: The possible role of plant growth promoting bacteria (PGPB) in alleviating soil salinity stress during plant growth under greenhouse conditions was investigated and increased phytohormones contents but decreased ABA contents and Na+ and Cl− content which may contribute in part to activation of processes involved in the alleviation of the effect of salt.
Abstract: Soil salinity is one of the most severe factors limiting growth and physiological response in Raphanus sativus. In this study, the possible role of plant growth promoting bacteria (PGPB) in alleviating soil salinity stress during plant growth under greenhouse conditions was investigated. Increasing salinity in the soil decreased plant growth, photosynthetic pigments content, phytohormones contents (indole-3-acetic acid, IAA and gibberellic acid, GA3) and mineral uptake compared to soil without salinity. Seeds inoculated with Bacillus subtilis and Pseudomonas fluorescens caused significantly increase in fresh and dry masses of roots and leaves, photosynthetic pigments, proline, total free amino acids and crude protein contents compared to noninoculated ones under salinity. The bacteria also increased phytohormones contents (IAA and GA3) and the contents of N, P, K+, Ca2+, and Mg2+ but decreased ABA contents and Na+ and Cl− content which may contribute in part to activation of processes involved in the alleviation of the effect of salt.

130 citations

01 Jan 2011
TL;DR: An in vitro assay using excised tuber buds to study the dormancy-releasing capacity of GA and CK shows that application of gibberellic acid (GA3) is sufficient to induce sprouting and indicates that GA is not sufficient to break dormancy in the absence of CK.
Abstract: Reactivation of dormant meristems is of central importance for plant fitness and survival. Due to their large meristem size, potato (Solanum tuberosum) tubers serve as a model system to study the underlying molecular processes. The phytohormones cytokinins (CK) and gibberellins (GA) play important roles in releasing potato tuber dormancy and promoting sprouting, but their mode of action in these processes is still obscure. Here, we established an in vitro assay using excised tuber buds to study the dormancy-releasing capacity of GA and CK and show that application of gibberellic acid (GA 3 ) is sufficient to induce sprouting. In contrast, treatment with 6-benzylaminopurine induced bud break but did not support further sprout growth unless GA 3 was administered additionally. Transgenic potato plants expressing Arabidopsis (Arabidopsis thaliana) GA 20-oxidase or GA 2-oxidase to modify endogenous GA levels showed the expected phenotypical changes as well as slight effects on tuber sprouting. The isopentenyltransferase (IPT) from Agrobacterium tumefaciens and the Arabidopsis cytokinin oxidase/dehydrogenase1 (CKX) were exploited to modify the amounts of CK in transgenic potato plants. IPT expression promoted earlier sprouting in vitro. Strikingly, CKX-expressing tubers exhibited a prolonged dormancy period and did not respond to GA3. This supports an essential role of CK in terminating tuber dormancy and indicates that GA is not sufficient to break dormancy in the absence of CK. GA3-treated wild-type and CKX-expressing tuber buds were subjected to a transcriptome analysis that revealed transcriptional changes in several functional groups, including cell wall metabolism, cell cycle, and auxin and ethylene signaling, denoting events associated with the reactivation of dormant meristems.

129 citations

Journal ArticleDOI
TL;DR: The temporal, spatial and hormonal regulation pattern of LeXET4 gene expression suggests that XET has a role in endosperm cap weakening, a key process regulating tomato seed germination.
Abstract: Xyloglucan endotransglycosylases (XETs) modify xyloglucans, major components of primary cell walls in dicots. A cDNA encoding an XET (LeXET4) was isolated from a germinating tomato (Lycopersicon esculentum Mill.) seed cDNA library. DNA gel blot analysis showed that LeXET4 is a single-copy gene in the tomato genome. LeXET4 mRNA was strongly expressed in germinating seeds, was much less abundant in stems, and was not detected in roots, leaves or flower tissues. During germination, LeXET4 mRNA was detected in seeds within 12 h of imbibition with maximum mRNA abundance at 24 h. Tissue prints showed that LeXET4 mRNA was localized exclusively to the endosperm cap region. Expression of LeXET4 was dependent on exogenous gibberellin (GA) in GA-deficient (gib-1 mutant) tomato seeds, while abscisic acid, a seed germination inhibitor, had no effect on LeXET4 mRNA expression in wild-type seeds. LeXET4 mRNA disappeared after radicle emergence, even though degradation of the lateral endosperm cell walls continued. The temporal, spatial and hormonal regulation pattern of LeXET4 gene expression suggests that XET has a role in endosperm cap weakening, a key process regulating tomato seed germination.

128 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
94% related
Germination
51.9K papers, 877.9K citations
91% related
Auxin
10.7K papers, 502.6K citations
91% related
Seedling
28.6K papers, 478.2K citations
88% related
Abscisic acid
12.8K papers, 587K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023203
2022406
2021133
2020153
2019165
2018196