scispace - formally typeset
Search or ask a question
Topic

Gibberellic acid

About: Gibberellic acid is a research topic. Over the lifetime, 6597 publications have been published within this topic receiving 109294 citations. The topic is also known as: GIBBERELLIN A3.


Papers
More filters
Journal ArticleDOI
TL;DR: The proteomic analysis indicated that GAs do not participate in many processes involved in germination sensu stricto (prior to radicle protrusion), as well as the initial mobilization of seed protein and lipid reserves, while two isoforms of S-adenosyl-methionine synthetase, which catalyzes the formation of Ado-Met from Met and ATP, might represent a major metabolic control of seedling establishment.
Abstract: We examined the role of gibberellins (GAs) in germination of Arabidopsis seeds by a proteomic approach. For that purpose, we used two systems. The first system consisted of seeds of the GA-deficient ga1 mutant, and the second corresponded to wild-type seeds incubated in paclobutrazol, a specific GA biosynthesis inhibitor. With both systems, radicle protrusion was strictly dependent on exogenous GAs. The proteomic analysis indicated that GAs do not participate in many processes involved in germination sensu stricto (prior to radicle protrusion), as, for example, the initial mobilization of seed protein and lipid reserves. Out of 46 protein changes detected during germination sensu stricto (1 d of incubation on water), only one, corresponding to the cytoskeleton component α-2,4 tubulin, appeared to depend on the action of GAs. An increase in this protein spot was noted for the wild-type seeds but not for the ga1 seeds incubated for 1 d on water. In contrast, GAs appeared to be involved, directly or indirectly, in controlling the abundance of several proteins associated with radicle protrusion. This is the case for two isoforms of S -adenosyl-methionine (Ado-Met) synthetase, which catalyzes the formation of Ado-Met from Met and ATP. Owing to the housekeeping functions of Ado-Met, this event is presumably required for germination and seedling establishment, and might represent a major metabolic control of seedling establishment. GAs can also play a role in controlling the abundance of a β-glucosidase, which might be involved in the embryo cell wall loosening needed for cell elongation and radicle extension.

289 citations

Journal ArticleDOI
01 Oct 1998-Ecology
TL;DR: It is reported that smoke induces germination in 25 chaparral species, none of which were families known for heat-shock-stimulated germination, and it is suggested that such differences in response may affect postfire community structure.
Abstract: The California chaparral community has a rich flora of species with different mechanisms for cuing germination to postfire conditions. Heat shock triggers germination of certain species but has no stimulatory effect on a great many other postfire species that are chemically stimulated by combustion products. Previous reports have shown that charred wood will induce germination, and here we report that smoke also induces germination in these same species. Smoke is highly effective, often inducing 100% germination in deeply dormant seed populations with 0% control germination. Smoke induces germination both directly and indirectly by aqueous or gaseous transfer from soil to seeds. Neither nitrate nor ammonium ions were effective in stimulating germination of smoke-stimulated species, nor were most of the quantitatively important gases generated by biomass smoke. Nitrogen dioxide, however, was very effective at inducing germination in Caulanthus heterophyllus (Brassicaceae), Emmenanthe penduliflora (Hydrophyllaceae), Phacelia grandiflora (Hy- drophyllaceae), and Silene multinervia (Caryophyllaceae). Three species, Dendromecon rigida (Papaveraceae), Dicentra chrysantha, and Trichostema lanatum(Lamiaceae), failed to germinate unless smoke treatment was coupled with prior treatment of 1 yr soil storage. Smoke-stimulated germination was found in 25 chaparral species, representing 11 fam- ilies, none of which were families known for heat-shock-stimulated germination. Seeds of smoke-stimulated species have many analogous characteristics that separate them from most heat-shock-stimulated seeds, including: (1) outer seed coats that are highly textured, (2) a poorly developed outer cuticle, (3) absence of a dense palisade tissue in the seed coat, and (4) a subdermal membrane that is semipermeable, allowing water passage but blocking entry of large (molecular mass . 500) solutes. Tentative evidence suggests that permeability characteristics of this subdermal layer are altered by smoke. While the mech- anism behind smoke-induced germination is not known, it appears that smoke may be involved in overcoming different blocks to germination in different species. For example, in Emmenanthe penduliflora, NO2 in smoke was sufficient to induce germination, and most forms of physical or chemical scarification also induced germination. ForRomneya coulteri, NO2 alone failed to induce germination, and scarified seeds required addition of gibberellic acid. In Dicentra chrysantha, none of these treatments, nor smoke alone, induced germi- nation, but germination was triggered by a combination of soil burial followed by smoke treatment. Smoke-stimulated species differed substantially in the duration of smoke ex- posure required to induce germination, and this was inversely correlated with tolerance to smoke exposure. We suggest that such differences in response may affect postfire community structure.

287 citations

Journal ArticleDOI
TL;DR: The production of protease by isolated aleurone layers of barley in response to gibberellic acid has been examined, giving some credence to the hypothesis that the effect of gibb Berellic Acid is to promote the simultaneous synthesis and secretion of a group of hydrolases.
Abstract: The production of protease by isolated aleurone layers of barley in response to gibberellic acid has been examined. The protease arises in the aleurone layer and is mostly released from the aleurone cells. The courses of release of amylase and protease from aleurone layers, the dose responses to gibberellic acid and the effects of inhibitors on the production of both enzymes are parallel. As is the case for amylase, protease is made de novo in response to the hormone. These data give some credence to the hypothesis that the effect of gibberellic acid is to promote the simultaneous synthesis and secretion of a group of hydrolases.

283 citations

01 Jan 1967
TL;DR: In this article, the authors examined the production of protease by isolated aleurone layers of barley in response to gibberellic acid and found that the effect of the acid is to promote the simultaneous synthesis and secretion of a group of hydrolases.
Abstract: The production of protease by isolated aleurone layers of barley in response to gibberellic acid has been examined. The protease arises in the aleurone layer and is mostly released from the aleurone cells. The courses of release of amylase and protease from aleurone layers, the dose responses to gibberellic acid and the effects of inhibitors on the production of both enzymes are parallel. As is the case for amylase, protease is made de novo in response to the hormone. These data give some credence to the hypothesis that the effect of gibberellic acid is to promote the simultaneous synthesis and secretion of a group of hydrolases.

278 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
94% related
Germination
51.9K papers, 877.9K citations
91% related
Auxin
10.7K papers, 502.6K citations
91% related
Seedling
28.6K papers, 478.2K citations
88% related
Abscisic acid
12.8K papers, 587K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023203
2022406
2021133
2020153
2019165
2018196