scispace - formally typeset

Gibbs sampling

About: Gibbs sampling is a(n) research topic. Over the lifetime, 7193 publication(s) have been published within this topic receiving 374052 citation(s). more


Journal ArticleDOI: 10.1109/TPAMI.1984.4767596
Stuart Geman1, Donald Geman2Institutions (2)
Abstract: We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios. more

Topics: Gibbs sampling (61%), Gibbs algorithm (59%), Maximum a posteriori estimation (58%) more

18,328 Citations

Open accessJournal ArticleDOI: 10.1214/SS/1177011136
Abstract: The Gibbs sampler, the algorithm of Metropolis and similar iterative simulation methods are potentially very helpful for summarizing multivariate distributions. Used naively, however, iterative simulation can give misleading answers. Our methods are simple and generally applicable to the output of any iterative simulation; they are designed for researchers primarily interested in the science underlying the data and models they are analyzing, rather than for researchers interested in the probability theory underlying the iterative simulations themselves. Our recommended strategy is to use several independent sequences, with starting points sampled from an overdispersed distribution. At each step of the iterative simulation, we obtain, for each univariate estimand of interest, a distributional estimate and an estimate of how much sharper the distributional estimate might become if the simulations were continued indefinitely. Because our focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normality after transformations and marginalization, we derive our results as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations. The methods are illustrated on a random-effects mixture model applied to experimental measurements of reaction times of normal and schizophrenic patients. more

Topics: Bayesian inference (58%), Gibbs sampling (57%), Mixture model (55%) more

12,022 Citations

Open accessBook
Kenneth Train1Institutions (1)
01 Jan 2003-
Abstract: This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum simulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. No other book incorporates all these fields, which have arisen in the past 20 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing. more

Topics: Mixed logit (63%), Discrete choice (56%), Logit (53%) more

7,755 Citations

BookDOI: 10.1201/B14835
01 Aug 1997-Technometrics
Abstract: INTRODUCING MARKOV CHAIN MONTE CARLO Introduction The Problem Markov Chain Monte Carlo Implementation Discussion HEPATITIS B: A CASE STUDY IN MCMC METHODS Introduction Hepatitis B Immunization Modelling Fitting a Model Using Gibbs Sampling Model Elaboration Conclusion MARKOV CHAIN CONCEPTS RELATED TO SAMPLING ALGORITHMS Markov Chains Rates of Convergence Estimation The Gibbs Sampler and Metropolis-Hastings Algorithm INTRODUCTION TO GENERAL STATE-SPACE MARKOV CHAIN THEORY Introduction Notation and Definitions Irreducibility, Recurrence, and Convergence Harris Recurrence Mixing Rates and Central Limit Theorems Regeneration Discussion FULL CONDITIONAL DISTRIBUTIONS Introduction Deriving Full Conditional Distributions Sampling from Full Conditional Distributions Discussion STRATEGIES FOR IMPROVING MCMC Introduction Reparameterization Random and Adaptive Direction Sampling Modifying the Stationary Distribution Methods Based on Continuous-Time Processes Discussion IMPLEMENTING MCMC Introduction Determining the Number of Iterations Software and Implementation Output Analysis Generic Metropolis Algorithms Discussion INFERENCE AND MONITORING CONVERGENCE Difficulties in Inference from Markov Chain Simulation The Risk of Undiagnosed Slow Convergence Multiple Sequences and Overdispersed Starting Points Monitoring Convergence Using Simulation Output Output Analysis for Inference Output Analysis for Improving Efficiency MODEL DETERMINATION USING SAMPLING-BASED METHODS Introduction Classical Approaches The Bayesian Perspective and the Bayes Factor Alternative Predictive Distributions How to Use Predictive Distributions Computational Issues An Example Discussion HYPOTHESIS TESTING AND MODEL SELECTION Introduction Uses of Bayes Factors Marginal Likelihood Estimation by Importance Sampling Marginal Likelihood Estimation Using Maximum Likelihood Application: How Many Components in a Mixture? Discussion Appendix: S-PLUS Code for the Laplace-Metropolis Estimator MODEL CHECKING AND MODEL IMPROVEMENT Introduction Model Checking Using Posterior Predictive Simulation Model Improvement via Expansion Example: Hierarchical Mixture Modelling of Reaction Times STOCHASTIC SEARCH VARIABLE SELECTION Introduction A Hierarchical Bayesian Model for Variable Selection Searching the Posterior by Gibbs Sampling Extensions Constructing Stock Portfolios With SSVS Discussion BAYESIAN MODEL COMPARISON VIA JUMP DIFFUSIONS Introduction Model Choice Jump-Diffusion Sampling Mixture Deconvolution Object Recognition Variable Selection Change-Point Identification Conclusions ESTIMATION AND OPTIMIZATION OF FUNCTIONS Non-Bayesian Applications of MCMC Monte Carlo Optimization Monte Carlo Likelihood Analysis Normalizing-Constant Families Missing Data Decision Theory Which Sampling Distribution? Importance Sampling Discussion STOCHASTIC EM: METHOD AND APPLICATION Introduction The EM Algorithm The Stochastic EM Algorithm Examples GENERALIZED LINEAR MIXED MODELS Introduction Generalized Linear Models (GLMs) Bayesian Estimation of GLMs Gibbs Sampling for GLMs Generalized Linear Mixed Models (GLMMs) Specification of Random-Effect Distributions Hyperpriors and the Estimation of Hyperparameters Some Examples Discussion HIERARCHICAL LONGITUDINAL MODELLING Introduction Clinical Background Model Detail and MCMC Implementation Results Summary and Discussion MEDICAL MONITORING Introduction Modelling Medical Monitoring Computing Posterior Distributions Forecasting Model Criticism Illustrative Application Discussion MCMC FOR NONLINEAR HIERARCHICAL MODELS Introduction Implementing MCMC Comparison of Strategies A Case Study from Pharmacokinetics-Pharmacodynamics Extensions and Discussion BAYESIAN MAPPING OF DISEASE Introduction Hypotheses and Notation Maximum Likelihood Estimation of Relative Risks Hierarchical Bayesian Model of Relative Risks Empirical Bayes Estimation of Relative Risks Fully Bayesian Estimation of Relative Risks Discussion MCMC IN IMAGE ANALYSIS Introduction The Relevance of MCMC to Image Analysis Image Models at Different Levels Methodological Innovations in MCMC Stimulated by Imaging Discussion MEASUREMENT ERROR Introduction Conditional-Independence Modelling Illustrative examples Discussion GIBBS SAMPLING METHODS IN GENETICS Introduction Standard Methods in Genetics Gibbs Sampling Approaches MCMC Maximum Likelihood Application to a Family Study of Breast Cancer Conclusions MIXTURES OF DISTRIBUTIONS: INFERENCE AND ESTIMATION Introduction The Missing Data Structure Gibbs Sampling Implementation Convergence of the Algorithm Testing for Mixtures Infinite Mixtures and Other Extensions AN ARCHAEOLOGICAL EXAMPLE: RADIOCARBON DATING Introduction Background to Radiocarbon Dating Archaeological Problems and Questions Illustrative Examples Discussion Index more

Topics: Gibbs sampling (65%), Slice sampling (63%), Metropolis–Hastings algorithm (62%) more

7,284 Citations

Journal ArticleDOI: 10.1080/01621459.1990.10476213
Alan E. Gelfand1, Adrian F. M. Smith2Institutions (2)
Abstract: Stochastic substitution, the Gibbs sampler, and the sampling-importance-resampling algorithm can be viewed as three alternative sampling- (or Monte Carlo-) based approaches to the calculation of numerical estimates of marginal probability distributions. The three approaches will be reviewed, compared, and contrasted in relation to various joint probability structures frequently encountered in applications. In particular, the relevance of the approaches to calculating Bayesian posterior densities for a variety of structured models will be discussed and illustrated. more

Topics: Gibbs sampling (61%), Importance sampling (57%), Monte Carlo method (57%) more

6,132 Citations

No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

David B. Dunson

70 papers, 3.8K citations

Jean-Yves Tourneret

53 papers, 1.9K citations

Nicolas Dobigeon

46 papers, 1.4K citations

Ming-Hui Chen

21 papers, 2.6K citations

Alan E. Gelfand

20 papers, 14.6K citations

Network Information
Related Topics (5)
Bayesian probability

26.5K papers, 817.9K citations

90% related
Posterior probability

13.7K papers, 475K citations

90% related
Prior probability

14.8K papers, 428.9K citations

89% related
Markov chain Monte Carlo

20.1K papers, 746.5K citations

88% related
Likelihood function

10.3K papers, 517.3K citations

88% related