scispace - formally typeset
Search or ask a question
Topic

Glass transition

About: Glass transition is a research topic. Over the lifetime, 40774 publications have been published within this topic receiving 1002766 citations. The topic is also known as: glass–liquid transition.


Papers
More filters
Journal ArticleDOI
Akihisa Inoue1
TL;DR: In this article, the authors investigated the stabilization properties of the supercooled liquid for a number of alloys in the Mg-, lanthanide-, Zr-, Ti-, Fe-, Co-, Pd-Cu- and Ni-based systems.

5,173 citations

Journal ArticleDOI
TL;DR: In this paper, a molecularkinetic theory was proposed to explain the temperature dependence of relaxation behavior in glass-forming liquids in terms of the temperature variation of the size of the cooperatively rearranging region.
Abstract: A molecular‐kinetic theory, which explains the temperature dependence of relaxation behavior in glass‐forming liquids in terms of the temperature variation of the size of the cooperatively rearranging region, is presented. The size of this cooperatively rearranging region is shown to be determined by configuration restrictions in these glass‐forming liquids and is expressed in terms of their configurational entropy. The result of the theory is a relation practically coinciding with the empirical WLF equation. Application of the theory to viscosimetric experiments permits evaluation of the ratio of the kinetic glass temperature Tg (derived from usual ``quasistatic'' experiments) to the equilibrium second‐order transition temperature T2 (indicated by either statistical‐mechanical theory or extrapolations of experimental data) as well as the hindrance‐free energy per molecule. These parameters have been evaluated for fifteen substances, the experimental data for which were available. Hindrance‐free energies ...

5,037 citations

Journal ArticleDOI
31 Mar 1995-Science
TL;DR: The onset of a sharp change in ddT( is the Debye-Waller factor and T is temperature) in proteins, which is controversially indentified with the glass transition in liquids, is shown to be general for glass formers and observable in computer simulations of strong and fragile ionic liquids, where it proves to be close to the experimental glass transition temperature.
Abstract: Glasses can be formed by many routes. In some cases, distinct polyamorphic forms are found. The normal mode of glass formation is cooling of a viscous liquid. Liquid behavior during cooling is classified between "strong" and "fragile," and the three canonical characteristics of relaxing liquids are correlated through the fragility. Strong liquids become fragile liquids on compression. In some cases, such conversions occur during cooling by a weak first-order transition. This behavior can be related to the polymorphism in a glass state through a recent simple modification of the van der Waals model for tetrahedrally bonded liquids. The sudden loss of some liquid degrees of freedom through such first-order transitions is suggestive of the polyamorphic transition between native and denatured hydrated proteins, which can be interpreted as single-chain glass-forming polymers plasticized by water and cross-linked by hydrogen bonds. The onset of a sharp change in d dT( is the Debye-Waller factor and T is temperature) in proteins, which is controversially indentified with the glass transition in liquids, is shown to be general for glass formers and observable in computer simulations of strong and fragile ionic liquids, where it proves to be close to the experimental glass transition temperature. The latter may originate in strong anharmonicity in modes ("bosons"), which permits the system to access multiple minima of its configuration space. These modes, the Kauzmann temperature T(K), and the fragility of the liquid, may thus be connected.

4,016 citations

Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: Current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses is discussed.
Abstract: Glasses are disordered materials that lack the periodicity of crystals but behave mechanically like solids. The most common way of making a glass is by cooling a viscous liquid fast enough to avoid crystallization. Although this route to the vitreous state-supercooling-has been known for millennia, the molecular processes by which liquids acquire amorphous rigidity upon cooling are not fully understood. Here we discuss current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses. An intriguing aspect of this behaviour is the apparent connection between dynamics and thermodynamics. The multidimensional potential energy surface as a function of particle coordinates (the energy landscape) offers a convenient viewpoint for the analysis and interpretation of supercooling and glass-formation phenomena. That much of this analysis is at present largely qualitative reflects the fact that precise computations of how viscous liquids sample their landscape have become possible only recently.

3,736 citations

Journal ArticleDOI
TL;DR: A series of hydrophilic and hydrophobic 1-alkyl-3-methylimidazolium room temperature ionic liquids (RTILs) have been prepared and characterized to determine how water content, density, viscosity, surface tension, melting point, and thermal stability are affected by changes in alkyl chain length and anion.

3,469 citations


Network Information
Related Topics (5)
Polymerization
147.9K papers, 2.7M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
86% related
Oxide
213.4K papers, 3.6M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023806
20221,676
20211,022
20201,086
20191,187
20181,286