scispace - formally typeset
Topic

Glutathione

About: Glutathione is a(n) research topic. Over the lifetime, 42523 publication(s) have been published within this topic receiving 1876505 citation(s). The topic is also known as: GSH & Glutathione-SH.
Papers
More filters

Journal ArticleDOI
TL;DR: The purification of homogeneous glutathione S-transferases B and C from rat liver is described, and only transferases A and C are immunologically related.
Abstract: The purification of homogeneous glutathione S-transferases B and C from rat liver is described. Kinetic and physical properties of these enzymes are compared with those of homogeneous transferases A and E. The letter designations for the transferases are based on the reverse order of elution from carboxymethylcellulose, the purification step in which the transferases are separated from each other. Transferase B was purified on the basis of its ability to conjugate iodomethane with glutathione, whereas transferase C was purified on the basis of conjugation with 1,2-dichloro-4-nitrobenzene. Although each of the four enzymes can be identified by its reactivity with specific substrates, all of the enzymes are active to differing degrees in the conjugation of glutathione with p-nitrobenzyl chloride. Assay conditions for a variety of substrates are included. All four glutathione transferases have a molecular weight of 45,000 and are dissociable into subunits of approximately 25,000 daltons. Despite the similar physical properties and overlapping substrate specificities of these enzymes, only transferases A and C are immunologically related.

15,763 citations


Journal ArticleDOI
TL;DR: Glutathione peroxidase activity is found to be associated with a relatively stable, nondialyzable, heat-labile, intracellular component which is separable from hemoglobin, by gel filtration and ammonium sulfate precipitation.
Abstract: An assay procedure is described in which blood cell glutathione peroxidase may be accurately measured by a direct spectrophotometric procedure. Glutathione peroxidase activity is found to be associated with a relatively stable, nondialyzable, heat-labile, intracellular component which is separable from hemoglobin, by gel filtration and ammonium sulfate precipitation. The activity appears to be dependent upon active sulfhydryl groups and is unaffected by low concentrations of azide, cyanide, or ferricyanide.

9,934 citations


Journal ArticleDOI
TL;DR: The biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery are described, which protects plants against oxidative stress damages.
Abstract: Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.

6,556 citations



Journal ArticleDOI
TL;DR: The use of the foregoing analytical method in the determination of total and oxidized glutathione contents of rat blood, kidney, and liver gave values in good agreement with those obtained by previous investigators.
Abstract: A method for the analysis of nanogram quantities of glutathione has been developed which is based on the catalytic action of GSH or GSSG in the reduction of Ellman reagent (DTNB) by a mixture of TPNH and yeast glutathione reductase. Unlike previous methods of analysis the procedure described here effectively measures the total glutathione (GSH + GSSG) content of unknown mixtures and is not subject to appreciable interference by the presence of other thiol components. It is suggested that the catalytic action of glutathione in this system resides in the continual enzymic regeneration of GSH, present initially or formed enzymically from GSSG, following its interaction with the sulfhydryl reagent. The sensitivity of the method is such as to permit the determination of total glutathione in extracellular tissue fluids such as plasma, saliva, and urine normally containing very low levels of this material, essentially without pretreatment of the sample. The same is true for glutathione determinations of whole blood, in which the preliminary procedure is confined to the preparation of a 1:100 hemolyzate from as little as 10 μl of sample. Following published procedures, the pretreatment of tissue extracts with NEM to form an enzymically inactive complex with free GSH allowed the determination of the low levels of oxidized glutathione normally present therein. The use of the foregoing analytical method in the determination of total and oxidized glutathione contents of rat blood, kidney, and liver gave values in good agreement with those obtained by previous investigators.

5,785 citations


Network Information
Related Topics (5)
Glutathione peroxidase

25.5K papers, 965.7K citations

96% related
Oxidative stress

86.5K papers, 3.8M citations

95% related
Glutathione reductase

13.1K papers, 630.7K citations

95% related
Lipid peroxidation

42.4K papers, 1.8M citations

95% related
Reactive oxygen species

36.6K papers, 2M citations

95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202230
20211,201
20201,262
20191,285
20181,246
20171,312

Top Attributes

Show by:

Topic's top 5 most impactful authors

Bengt Mannervik

147 papers, 11.4K citations

Dean P. Jones

100 papers, 11.7K citations

Neil Kaplowitz

66 papers, 6.7K citations

Yogesh C. Awasthi

58 papers, 3.2K citations

Moacir Wajner

53 papers, 1K citations