scispace - formally typeset
Search or ask a question
Topic

Glutathione

About: Glutathione is a research topic. Over the lifetime, 42523 publications have been published within this topic receiving 1876505 citations. The topic is also known as: GSH & Glutathione-SH.


Papers
More filters
Journal ArticleDOI
TL;DR: The use of the foregoing analytical method in the determination of total and oxidized glutathione contents of rat blood, kidney, and liver gave values in good agreement with those obtained by previous investigators.

5,900 citations

Journal ArticleDOI
TL;DR: These low molecular mass antioxidant molecules add significantly to the defense provided by the enzymes superoxide dismutase, catalase and glutathione peroxidases, which are termed ‘oxidative stress’.
Abstract: An imbalance between oxidants and antioxidants in favour of the oxidants, potentially leading to damage, is termed 'oxidative stress'. Oxidants are formed as a normal product of aerobic metabolism but can be produced at elevated rates under pathophysiological conditions. Antioxidant defense involves several strategies, both enzymatic and non-enzymatic. In the lipid phase, tocopherols and carotenes as well as oxy-carotenoids are of interest, as are vitamin A and ubiquinols. In the aqueous phase, there are ascorbate, glutathione and other compounds. In addition to the cytosol, the nuclear and mitochondrial matrices and extracellular fluids are protected. Overall, these low molecular mass antioxidant molecules add significantly to the defense provided by the enzymes superoxide dismutase, catalase and glutathione peroxidases.

4,485 citations

Journal ArticleDOI
TL;DR: It is reported here that 2-vinylpyridine is a much better reagent for the derivitization of glutathione, and it is demonstrated that the total glutATHione concentration in mouse plasma is substantially higher than generally reported and that glutathion disulfide constitutes less than 30% of the totalglutathione present.

4,279 citations

Journal ArticleDOI
TL;DR: This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.
Abstract: Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53. Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.

4,272 citations

Journal ArticleDOI
TL;DR: Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
Abstract: ▪ Abstract At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxid...

4,027 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
88% related
Programmed cell death
60.5K papers, 3.8M citations
88% related
Gene expression
113.3K papers, 5.5M citations
86% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Cell culture
133.3K papers, 5.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20231,849
20223,718
20211,251
20201,264
20191,285