scispace - formally typeset
Topic

Glutathione reductase

About: Glutathione reductase is a(n) research topic. Over the lifetime, 13155 publication(s) have been published within this topic receiving 630757 citation(s). The topic is also known as: epididymis luminal protein 75 & GRase.
Papers
More filters

Journal ArticleDOI
TL;DR: The purification of homogeneous glutathione S-transferases B and C from rat liver is described, and only transferases A and C are immunologically related.
Abstract: The purification of homogeneous glutathione S-transferases B and C from rat liver is described. Kinetic and physical properties of these enzymes are compared with those of homogeneous transferases A and E. The letter designations for the transferases are based on the reverse order of elution from carboxymethylcellulose, the purification step in which the transferases are separated from each other. Transferase B was purified on the basis of its ability to conjugate iodomethane with glutathione, whereas transferase C was purified on the basis of conjugation with 1,2-dichloro-4-nitrobenzene. Although each of the four enzymes can be identified by its reactivity with specific substrates, all of the enzymes are active to differing degrees in the conjugation of glutathione with p-nitrobenzyl chloride. Assay conditions for a variety of substrates are included. All four glutathione transferases have a molecular weight of 45,000 and are dissociable into subunits of approximately 25,000 daltons. Despite the similar physical properties and overlapping substrate specificities of these enzymes, only transferases A and C are immunologically related.

15,763 citations


Journal ArticleDOI
TL;DR: The biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery are described, which protects plants against oxidative stress damages.
Abstract: Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.

6,556 citations


Journal ArticleDOI
09 Feb 1973-Science
TL;DR: When hemolyzates from erythrocytes of selenium-deficient rats were incubated in vitro in the presence of ascorbate or H2O2, added glutathione failed to protect the hemoglobin from oxidative damage.
Abstract: When hemolyzates from erythrocytes of selenium-deficient rats were incubated in vitro in the presence of ascorbate or H(2)O(2), added glutathione failed to protect the hemoglobin from oxidative damage. This occurred because the erythrocytes were practically devoid of glutathione-peroxidase activity. Extensively purified preparations of glutathione peroxidase contained a large part of the (75)Se of erythrocytes labeled in vivo. Many of the nutritional effects of selenium can be explained by its role in glutathione peroxidase.

6,444 citations


Journal ArticleDOI
TL;DR: The use of the foregoing analytical method in the determination of total and oxidized glutathione contents of rat blood, kidney, and liver gave values in good agreement with those obtained by previous investigators.
Abstract: A method for the analysis of nanogram quantities of glutathione has been developed which is based on the catalytic action of GSH or GSSG in the reduction of Ellman reagent (DTNB) by a mixture of TPNH and yeast glutathione reductase. Unlike previous methods of analysis the procedure described here effectively measures the total glutathione (GSH + GSSG) content of unknown mixtures and is not subject to appreciable interference by the presence of other thiol components. It is suggested that the catalytic action of glutathione in this system resides in the continual enzymic regeneration of GSH, present initially or formed enzymically from GSSG, following its interaction with the sulfhydryl reagent. The sensitivity of the method is such as to permit the determination of total glutathione in extracellular tissue fluids such as plasma, saliva, and urine normally containing very low levels of this material, essentially without pretreatment of the sample. The same is true for glutathione determinations of whole blood, in which the preliminary procedure is confined to the preparation of a 1:100 hemolyzate from as little as 10 μl of sample. Following published procedures, the pretreatment of tissue extracts with NEM to form an enzymically inactive complex with free GSH allowed the determination of the low levels of oxidized glutathione normally present therein. The use of the foregoing analytical method in the determination of total and oxidized glutathione contents of rat blood, kidney, and liver gave values in good agreement with those obtained by previous investigators.

5,785 citations


Journal ArticleDOI
TL;DR: It is reported here that 2-vinylpyridine is a much better reagent for the derivitization of glutathione, and it is demonstrated that the total glutATHione concentration in mouse plasma is substantially higher than generally reported and that glutathion disulfide constitutes less than 30% of the totalglutathione present.
Abstract: The total glutathione content of biological samples is conveniently determined with an enzymatic recycling assay based on glutathione reductase ( F. Tietze, 1969 , Anal. Biochem. 27 , 502–522). In the original and several subsequent descriptions of this procedure, glutathione disulfide is selectively determined by assaying samples in which glutathione is masked by pretreatment with N -ethylmaleimide. Since N -ethylmaleimide is a potent inhibitor of glutathione reductase, it is necessary to remove excess reagent; the procedures used are laborious and contribute significantly to experimental error. It is reported here that 2-vinylpyridine is a much better reagent for the derivitization of glutathione. In contrast to N -ethylmaleimide, 2-vinylpyridine does not inhibit glutathione reductase significantly and therefore need not be removed from the sample solutions. 2-Vinylpyridine reacts with glutathione at slightly acidic pH values where spontaneous formation of glutathione disulfide is minimal. It is demonstrated that the total glutathione concentration in mouse plasma is substantially higher than generally reported and that glutathione disulfide constitutes less than 30% of the total glutathione present.

4,059 citations


Network Information
Related Topics (5)
Catalase

15.5K papers, 687.9K citations

95% related
Glutathione

42.5K papers, 1.8M citations

95% related
Lipid peroxidation

42.4K papers, 1.8M citations

94% related
Superoxide dismutase

38.7K papers, 1.8M citations

93% related
Oxidative stress

86.5K papers, 3.8M citations

92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20229
2021403
2020419
2019432
2018411
2017474

Top Attributes

Show by:

Topic's top 5 most impactful authors

Bengt Mannervik

58 papers, 6.8K citations

Jun Jiang

38 papers, 1.4K citations

Xiao-Qiu Zhou

37 papers, 1.4K citations

Ahmed E. Abdel Moneim

35 papers, 918 citations

Wei-Dan Jiang

31 papers, 1.2K citations