scispace - formally typeset
Search or ask a question

Showing papers on "Glycolysis published in 1990"


Journal ArticleDOI
TL;DR: It is proposed that preconditioning reduces myocardial energy demand during ischemia, which results in a reduced rate of high energy phosphate utilization and a reducedRate of anaerobic glycolysis, which is responsible for delaying ischemic cell death.
Abstract: We have shown previously that preconditioning myocardium with four 5-minute episodes of ischemia and reperfusion dramatically limited the size of infarcts caused by a subsequent 40-minute episode of sustained ischemia. The current study was undertaken to assess whether the same preconditioning protocol slowed the loss of high energy phosphates, limited catabolite accumulation, and/or delayed ultrastructural damage during a sustained ischemic episode. Myocardial metabolites and ultrastructure in the severely ischemic subendocardial regions were compared between control and preconditioned canine hearts. Hearts (four to 10 per group) were excised after 0, 5, 10, 20, or 40 minutes of sustained ischemia. All groups had comparable collateral blood flow. Preconditioned hearts developed ultrastructural injury more slowly than controls; evidence of irreversible injury was observed after 20 minutes in controls but not until 40 minutes in preconditioned hearts. Furthermore, after 40 minutes of ischemia, irreversible injury was homogeneous in controls but only focal in preconditioned myocardium. Preconditioning reduced starting levels of ATP by 29%. Nevertheless, it also slowed the rate of ATP depletion during the episode of sustained ischemia, so that after 10 minutes of ischemia, preconditioned hearts had more ATP than controls. However, after 40 minutes, ATP contents were not significantly different between groups. Preservation of ATP resulted from reduced ATP utilization and was not due to increased ATP production. Accumulation of purine nucleosides and bases (products of adenine nucleotide degradation) was limited in preconditioned myocardium. Accumulation of glucose-1-phosphate, glucose-6-phosphate, and lactate also was reduced markedly by preconditioning, due to reduced rates of glycogen breakdown and and anaerobic glycolysis. We propose that preconditioning reduces myocardial energy demand during ischemia, which results in a reduced rate of high energy phosphate utilization and a reduced rate of anaerobic glycolysis. Either preservation of ATP or reduction of the cellular load of catabolites may be responsible for delaying ischemic cell death.

785 citations


Journal ArticleDOI
01 Jun 1990-Diabetes
TL;DR: Evidence for a pivotal role of glucokinase as glucose sensor of the pancreatic β-cells is reviewed, and certain forms of diabetes mellitus might be due to glucokin enzyme deficiencies in pancreaticβ-cells, hepatocytes, or both.
Abstract: This article reviews evidence for a pivotal role of glucokinase as glucose sensor of the pancreatic beta-cells. Glucokinase explains the capacity, hexose specificity, affinities, sigmoidicity, and anomeric preference of pancreatic islet glycolysis, and because stimulation of glucose metabolism is a prerequisite of glucose stimulation of insulin release, glucokinase also explains many characteristics of this beta-cell function. Glucokinase of the beta-cell is induced or activated by glucose in contrast to liver glucokinase, which is regulated by insulin. Tissue-specific regulation corresponds with observations that liver and pancreatic beta-cell glucokinase are structurally distinct. Glucokinase could play a glucose-sensor role in hepatocytes as well, and certain forms of diabetes mellitus might be due to glucokinase deficiencies in pancreatic beta-cells, hepatocytes, or both.

628 citations


Journal ArticleDOI
TL;DR: The relative activities of hexokinase and 6-phosphofructokinase suggest that, particularly in neoplastic cells, in which the capacity for glucose transport is high, Hexokinase could approach saturation in respect to intracellular glucose; consequently, hexokin enzyme and phosphofructkinase could play an important role in the regulation of glycolytic flux in these cells.
Abstract: 1. Maximal activities of some key enzymes of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle and glutaminolysis were measured in homogenates from a variety of normal, neoplastic and suppressed cells. 2. The relative activities of hexokinase and 6-phosphofructokinase suggest that, particularly in neoplastic cells, in which the capacity for glucose transport is high, hexokinase could approach saturation in respect to intracellular glucose; consequently, hexokinase and phosphofructokinase could play an important role in the regulation of glycolytic flux in these cells. 3. The activity of pyruvate kinase is considerably higher in tumorigenic cells than in non-tumorigenic cells and higher in metastatic cells than in tumorigenic cells: for non-tumorigenic cells the activities range from 28.4 to 574, for tumorigenic cells from 899 to 1280, and for metastatic cells from 1590 to 1627 nmol/min per mg of protein. 4. The ratio of pyruvate kinase activity to 2 x phosphofructokinase activity is very high in neoplastic cells. The mean is 22.4 for neoplastic cells, whereas for muscle from 60 different animals it is only 3.8. 5. Both citrate synthase and isocitrate dehydrogenase activities are present in non-neoplastic and neoplastic cells, suggesting that the full complement of tricarboxylic-acid-cycle enzymes are present in these latter cells. 6. In neoplastic cells, the activity of glutaminase is similar to or greater than that of hexokinase, which suggests that glutamine may be as important as glucose for energy generation in these cells.

193 citations


Journal ArticleDOI
TL;DR: The metabolic parameter that correlated best with prevention or delay of ischemic contracture was the rate of glycolytic flux from glucose, which in this model of global low-flow ischemia had to accelerate to provide a rate of ATP production from glucose in excess of 2 mumol/g fresh wt/min within 30 minutes of the start of ischemIA to prevent ischeic contracture.
Abstract: This study analyzes the importance of the source and rate of ATP production (glucose flux, glycogenolysis, and oxidative phosphorylation) in the prevention of ischemic contracture in isolated rat hearts. Ischemic contracture was initiated at about 10 minutes by buffer perfusion with nonglycolytic substrates whereas the addition of 11 mM glucose prevented contracture for 2 hours. Tissue values of ATP, phosphocreatine, and lactate could be dissociated from onset of ischemic contracture. In hearts perfused with acetate or free fatty acid, with 11 mM glucose, glycolytic ATP production was 2.3-2.8 mumol/g fresh wt/min; as initial rates of glycogenolysis fell, glycolysis was maintained by a steady increase of glucose flux to values in excess of 2 mumol ATP/g fresh wt/min. Decreasing the glucose flux by lowering the perfusate glucose or by the addition of 2-deoxyglucose precipitated ischemic contracture. When oxidative phosphorylation was further reduced by hypoxia, glucose still prevented ischemic contracture; however, when oxidative phosphorylation dropped to near zero (near-anoxic) rates, glycolysis was inhibited, and glucose could only delay ischemic contracture to about 45 minutes. Combined ATP production rates could be dissociated from contracture. The metabolic parameter that correlated best with prevention or delay of ischemic contracture was the rate of glycolytic flux from glucose, which in this model of global low-flow ischemia had to accelerate to provide a rate of ATP production from glucose in excess of 2 mumol/g fresh wt/min within 30 minutes of the start of ischemia to prevent ischemic contracture.

175 citations


Journal ArticleDOI
01 Dec 1990-Diabetes
TL;DR: In this article, the proximal message in leucine-induced insulin release was shown to be specific to the secretagogue and the β-cell and can be envisioned as proximal.
Abstract: The β-cell is unique because its major agonists, i.e., insulin secretagogues, undergo metabolism instead of interacting with a receptor. This perspectives presents the hypothesis that the first part of a metabolic signal of a secretagogue is specific to the secretagogue and the β-cell and can be envisioned as proximal. The second part, which occurs after transduction to more universal signaling mechanisms, is viewed as distal. Distal signaling and exocytosis in the β-cell operate the same as in other cells. Aerobic glycolysis is required for glucose-induced insulin release. Because glyceraldehyde, which enters metabolism at the triose phosphates in the glycolytic pathway, is a potent insulin secretagogue but pyruvate, which is metabolized in the mitochondrion, is not an insulin secretagogue, the proximal signal for glucose-induced insulin release originates with an interaction between the central part of the glycolytic pathway and mitochondrial metabolism. The proximal message in leucine-induced insulin release originates with leucine allosterically activating glutamate dehydrogenase, which activates endogenous glutamate metabolism, and by the metabolism of leucine itself. The methyl ester of succinate is a potent experimental insulin secretogogue. It is puzzling why the glucose signal requires the interplay of glycolysis and mitochondrial metabolism, whereas the signals from leucine and succinate originate entirely from within the mitochondrion. Leucine-induced insulin release is suppressed and glucose-induced insulin release is activated in islets cultured at a high concentration of glucose. Conversely, leucine-induced insulin release is activated and glucose-induced insulin release is suppressed in islets cultured at low glucose. We have correlated suppression of the insulinotropism of leucine and glucose with decreased expression of the genes that encode the catalytic subunit of the first component of the branched-chain ketoacid dehydrogenase complex and the pyruvate dehydrogenase complex, respectively. This indicates that the proximal signal is specific to the secretagogue, whereas distal signals are more universal and are shared by many secretagogues. The proximal signaling mechanisms have yet to be elucidated, but many distal mechanisms are known.

175 citations


Journal ArticleDOI
TL;DR: It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.
Abstract: The relationships between Na/K pump activity and adenosine triphosphate (ATP) production were determined in isolated rat brain synaptosomes. The activity of the enzyme was modulated by altering [K+]e, [Na+]i, and [ATP]i while synaptosomal oxygen uptake and lactate production were measured simultaneously. KCl increased respiration and glycolysis with an apparent Km of about 1 mM which suggests that, at the [K+]e normally present in brain, 3.3-4 mM, the pump is near saturation with this cation. Depolarization with 6-40 mM KCl had negligible effect on ouabain-sensitive O2 uptake indicating that at the voltages involved the activity of the Na/K ATPase is largely independent of membrane potential. Increases in [Na+]i by addition of veratridine markedly enhanced glycoside-inhibitable respiration and lactate production. Calculations of the rates of ATP synthesis necessary to support the operation of the pump showed that greater than 90% of the energy was derived from oxidative phosphorylation. Consistent with this: (a) the ouabain-sensitive Rb/O2 ratio was close to 12 (i.e., Rb/ATP ratio of 2); (b) inhibition of mitochondrial ATP synthesis by Amytal resulted in a decrease in the glycoside-dependent rate of 86Rb uptake. Analyses of the mechanisms responsible for activation of the energy-producing pathways during enhanced Na and K movements indicate that glycolysis is predominantly stimulated by increase in activity of phosphofructokinase mediated via a rise in the concentrations of adenosine monophosphate [AMP] and inorganic phosphate [Pi] and a fall in the concentration of phosphocreatine [PCr]; the main moving force for the elevation in mitochondrial ATP generation is the decline in [ATP]/[ADP] [Pi] (or equivalent) and consequent readjustments in the ratio of the intramitochondrial pyridine nucleotides [( NAD]m/[NADH]m). Direct stimulation of pyruvate dehydrogenase by calcium appears to be of secondary importance. It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.

168 citations


Journal ArticleDOI
TL;DR: Investigation of the effect of acetic acid on transport of glucose and on the activity of glycolytic enzymes of Saccharomyces cerevisiae found enolase was the enzyme most severely affected according to these two criteria.
Abstract: The effect of acetic acid on transport of glucose and on the activity of glycolytic enzymes of Saccharomyces cerevisiae was investigated. Acetic acid did not affect glucose transport. The inhibitory effect of the acid on the enzymes was considered from the point of view of acidification of the cytoplasm (pH dependence of the activity) and of the direct effect of the presence of acetic acid. Enolase was the enzyme most severely affected according to these two criteria. Fermentation was monitored in vivo by 31P-NMR. When ATP was available, a rise in cytoplasmic pH was observed and fermentation proceeded with a lower level of sugar phosphate. This may indicate that control was exerted at one of the early phosphorylation steps.

150 citations


Journal ArticleDOI
TL;DR: Data confirm the key role played by MPP(+)-induced mitochondrial damage in MPTP toxicity and indicate that ATP produced via the glycolytic pathway can be utilized by hepatocytes to maintain mitochondrial electrochemical gradient, and a loss of mitochondrial membrane potential may occur only when supplies of ATP are depleted.

140 citations


Journal ArticleDOI
TL;DR: Skeletal muscle lipid oxidation is nearly entirely suppressed and glucose becomes the primary oxidative substrate of muscle and insulin-stimulated glycolysis is oxidized, with only a small portion released as lactate or alanine.
Abstract: The effects of physiological hyperinsulinemia (approximately 75 mU/l) on glucose storage, oxidation, and glycolysis in skeletal muscle were assessed with euglycemic clamps performed in seven healthy volunteers, in conjunction with leg balance for glucose, lactate, alanine, O2, and CO2. Infusion of insulin increased leg glucose uptake, storage, and oxidation but did not alter net release of lactate and alanine. The respiratory quotient (RQ) across the leg increased from a basal value of 0.74 +/- 0.02 to 0.99 +/- 0.02 during hyperinsulinemia. Under conditions of insulin stimulation, 49 +/- 5% of leg glucose uptake was stored, 37 +/- 4% was oxidized, and 14 +/- 2% was released as lactate and alanine. We conclude that during physiological hyperinsulinemia and euglycemia 1) skeletal muscle lipid oxidation is nearly entirely suppressed and glucose becomes the primary oxidative substrate of muscle, 2) glucose storage and oxidation are the major pathways of skeletal muscle glucose metabolism and are quantitatively similar at physiological insulin levels, and 3) the majority of insulin-stimulated glycolysis is oxidized, with only a small portion released as lactate or alanine.

140 citations


Journal ArticleDOI
TL;DR: D disruption of mitochondrial ATP formation was a common event contributing to the toxicity of chemical oxidants and ionophores, and acidotic pH was generally protective under these conditions of impaired ATP generation.

126 citations


Journal ArticleDOI
TL;DR: A monoclonal antibody for the IGF-I receptor inhibited both motility and glycolytic CO2 production, indicating that both processes are receptor mediated.
Abstract: The energy requirements via glycolytic pathways were directly measured in migrating tumor cells. Motility in the metastatic human melanoma cell line A2058, stimulated by insulinlike growth factor I (IGF-I), depends on glycolysis in the presence of glucose as its principal source of energy. Motility in glucose-free medium was 75% reduced and utilized mitochondrial respiration (inhibited by oligomycin). With increasing (physiologic) glucose concentrations, there was a dramatic shift to anaerobic glycolysis as the energy source and 93% elimination of the oligomycin inhibition of motility. Oxamate, an inhibitor of glycolysis, inhibited motility at all glucose concentrations. CO2 production from glycolysis and from the hexose monophosphate shunt was measured in migrating tumor cells. The time course and glucose-dose dependence of glycolytic CO2 production correlated directly with motility. In contrast, mitochondrial CO2 production was inversely related to glucose concentration. A monoclonal antibody for the IGF-I receptor inhibited both motility and glycolytic CO2 production, indicating that both processes are receptor mediated.

Journal Article
TL;DR: Some aspects of the metabolism of Plasmodium falciparum are reviewed, but conclusions based on the study of other species of plasmodia are intentionally not included since these may not be applicable.
Abstract: Selected aspects of the metabolism of Plasmodium falciparum are reviewed, but conclusions based on the study of other species of plasmodia are intentionally not included since these may not be applicable. The parasites increase glucose consumption 50-100 fold as compared to uninfected red cells; most of the glucose is metabolized to lactic acid. The parasite contains a complete set of glycolytic enzymes. Some enzymes such a hexokinase, enolase and pyruvate kinase are vastly increased over corresponding levels in uninfected red cells. However, the pathway for synthesizing 2,3-diphosphoglycerate (2,3-DPG) is absent. Parasitized red cells show a decline in the concentration of 2,3-DPG which may function as an inhibitor for certain essential enzyme pathways. Pentose shunt activity is increased in absolute terms, but as a percent of total glucose consumption, there is a decrease during parasite infection of the red cell. The parasite contains a gene for G6PD and can produce a small quantity of parasite-encoded enzyme. It is not clear if the production of this enzyme can be up-regulated in G6PG deficient host red cells. The NADPH normally produced by the pentose shunt can be obtained from other parasite pathways (such as glutamate dehydrogenase). NADPH may subserve additional needs in the infected red cell such as driving diribonucleotide reductase activity--a rate limiting enzyme in DNA synthesis. The role of NADPH in protecting the parasite-red cell system against oxidative stress (via glutathione reduction) remains controversial. Parasitized red cells contain about 10 times more NAD(H) than uninfected red cells, but the NADP(H) content is unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: The mature tumor hexokinase protein has been overexpressed in active form in Escherichia coli and purified 9-fold and questions pertinent to the enzyme's mechanism, regulation, binding to mitochondria, and its marked elevation in tumor cells can now be addressed.

Journal ArticleDOI
TL;DR: Glycolysis is depicted as a highly adaptive emergency mechanism which can prevent deleterious myocyte deenergization during forced ischemia-reperfusion transitions in presence of excess oxidative substrate.
Abstract: The quantitative importance of glycolysis in cardiomyocyte reenergization and contractile recovery was examined in postischemic, preload-controlled, isolated working guinea pig hearts. A 25-min global but low-flow ischemia with concurrent norepinephrine infusion to exhaust cellular glycogen stores was followed by a 15-min reperfusion. With 5 mM pyruvate as sole reperfusion substrate, severe contractile failure developed despite normal sarcolemmal pyruvate transport rate and high intracellular pyruvate concentrations near 2 mM. Reperfusion dysfunction was characterized by a low cytosolic phosphorylation potential ([ATP]/([ADP][Pi]) due to accumulations of inorganic phosphate (Pi) and lactate. In contrast, with 5 mM glucose plus pyruvate as substrates, but not with glucose as sole substrate, reperfusion phosphorylation potential and function recovered to near normal. During the critical ischemia-reperfusion transition at 30 s reperfusion the cytosolic creatine kinase appeared displaced from equilibrium, regardless of the substrate supply. When under these conditions glucose and pyruvate were coinfused, glycolytic flux was near maximum, the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction was enhanced, accumulation of Pi was attenuated, ATP content was slightly increased, and adenosine release was low. Thus, glucose prevented deterioration of the phosphorylation potential to levels incompatible with reperfusion recovery. Immediate energetic support due to maximum glycolytic ATP production and enhancement of the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction appeared to act in concert to prevent detrimental collapse of [ATP]/([ADP][Pi]) during creatine kinase dysfunction in the ischemia-reperfusion transition. Dichloroacetate (2 mM) plus glucose stimulated glycolysis but failed fully to reenergize the reperfused heart; conversely, 10 mM 2-deoxyglucose plus pyruvate inhibited glycolysis and produced virtually instantaneous de-energization during reperfusion. The following conclusions were reached. (1) A functional glycolysis is required to prevent energetic and contractile collapse of the low-flow ischemic or reperfused heart (2). Glucose stabilization of energetics in pyruvate-perfused hearts is due in part to intensification of glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase activity. (3) 2-Deoxyglucose depletes the glyceraldehyde-3-phosphate pool and effects intracellular phosphate fixation in the form of 2-deoxyglucose 6-phosphate, but the cytosolic phosphorylation potential is not increased and reperfusion failure occurs instantly. (4) Consistent correlations exist between cytosolic ATP phosphorylation potential and reperfusion contractile function. The findings depict glycolysis as a highly adaptive emergency mechanism which can prevent deleterious myocyte deenergization during forced ischemia-reperfusion transitions in presence of excess oxidative substrate.

Journal ArticleDOI
TL;DR: Lactobacillus plantarum strains used as silage inoculants were investigated for their ability to metabolize lactic acid anaerobically after prolonged incubation when glucose was absent from the medium, resulting in accumulation of formic, acetic and succinic acids along with CO2.
Abstract: Lactobacillus plantarum strains used as silage inoculants were investigated for their ability to metabolize lactic acid anaerobically after prolonged incubation (7–30 days) when glucose was absent from the medium. When citrate was present in the medium together with glucose during the initial fermentation, the lactic acid produced was degraded. Citrate was concomitantly degraded, resulting in accumulation of formic, acetic and succinic acids along with CO2. The anaerobic degradation was confirmed by the use of l14C(U) labelled lactate. The existence of pyruvate formate lyase in L. plantarum was indicated by using 14C-labelled pyruvate and HPLC identification of end-products. The 1-14C-carboxylic acid group of pyruvate was converted to formic acid, and the 3-14C was found in acetic acid. The key enzyme(s) in this metabolic pathway appears to require anaerobic conditions and induction by citrate.

Journal ArticleDOI
TL;DR: The developmental regulation of muscle bioenergetic metabolism appears to be regulated at the pretranslational level and is modulated by oxygen tension.
Abstract: Changes in the mRNA levels during mammalian myogenesis were compared for seven polypeptides of mitochondrial respiration (the mitochondrial DNA-encoded cytochrome oxidase subunit III, ATP synthase subunit 6, NADH dehydrogenase subunits 1 and 2, and 16S ribosomal RNA; the nuclear encoded ATP synthase beta subunit and the adenine nucleotide translocase) and three polypeptides of glycolysis (glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, and triose-phosphate isomerase). Progressive changes during the conversion from myoblasts to myotubes were monitored under both atmospheric oxygen (normoxic) and hypoxic environments. Northern analyses revealed coordinate, biphasic, and reciprocal expression of the respiratory and glycolytic mRNAs during myogenesis. In normoxic cells the mitochondrial respiratory enzymes were highest in myoblasts, declined 3- to 5-fold during commitment and exist from the cell cycle, and increased progressively as the myotubes matured. By contrast, the glycolytic enzyme mRNAs rose 3- to 6-fold on commitment and then progressively declined. When partially differentiated myotubes were switched to hypoxic conditions, the glycolytic enzyme mRNAs increased and the respiratory mRNAs declined. Hence, the developmental regulation of muscle bioenergetic metabolism appears to be regulated at the pretranslational level and is modulated by oxygen tension.

Journal ArticleDOI
TL;DR: Considering the constant energy charge at all time points during CSD, it is suggested that the AA rise reflects augmented phospholipase activity due to either increased intracellular [Ca2+] or receptor stimulation or both.
Abstract: The present study aimed to study the relation between the release of arachidonic acid (AA) and the energy state in cerebral cortices of rats during single episodes of cortical spreading depression (CSD). The changes in concentrations of AA, labile phosphate compounds [ATP, ADP, AMP, and phosphocreatine (PCr)], and glycolytic metabolites (lactate, pyruvate, glucose, and glycogen) were studied during and following the large change of the local direct current (DC) potential. Free AA increased markedly during the DC shift, continued to increase during the subsequent 3 min, and returned to control levels at 4-5 min after CSD. PCr decreased by 38% in the first minutes following the DC shift, while ADP increased by 38%. Both returned to normal within a few minutes. ATP, AMP, and energy charge remained constant throughout the experimental period. Glucose decreased by 47% and glycogen by 34% for a few minutes following CSD, while lactate increased by 105% at 2-3 min and by 77% at 4-5 min after CSD. The metabolites returned to control levels at 10 min after CSD. Considering the constant energy charge at all time points during CSD, it is suggested that the AA rise reflects augmented phospholipase activity due to either increased intracellular [Ca2+] or receptor stimulation or both. The possibility that N-methyl-D-aspartate receptors play a role in the release of AA, and that free AA in turn could be part of the mechanism of CSD, is discussed.

Journal ArticleDOI
TL;DR: In this article, the authors explored the role of 2-ketoglutarate dehydrogenase in the preferential and Ca2(+)-dependent stimulation of mitochondrial oxidative events in pancreatic islet cells.

Journal ArticleDOI
TL;DR: Killing of CHO cells by normobaric hyperoxia seems to be due to a severe disturbance of mitochondrial metabolism eventually leading to a depletion of cellular ATP pools, which is particularly critical for oxidative ATP generation in most cultured cells.

Journal ArticleDOI
TL;DR: It is concluded that a long period of sprint training induces a biochemical muscle adaptation to anaerobic exercise and is followed by a morphological adaptation, although this is probably not as specific as the biochemical one.
Abstract: The purpose of the present study was to investigate the effects of 8 months of a specific and controlled sprint training programme on three groups of young athletes (two groups of males and one of females). Biopsies of vastus lateralis were taken before and after the period of training. The type percentage and diameter of the fibres, as well as the glycogen content and the activities of the enzymes of glycogen metabolism (glycogen synthase and glycogen phosphorylase), glycolysis (phosphofructokinase, pyruvate kinase, aldolase and lactate dehydrogenase), oxidative metabolism (succinate de-hydrogenase) and creatine kinase and aminotransferases were studied. The results show an increase in the percentage of type I fibres and an increase in the diameter of both fibre types. A significant increase was also observed in glycogen content, and in the activities of glycogen synthase, glycogen phosphorylase, phosphofructokinase, pyruvate kinase, succinate dehydrogenase, aspartate aminotransferase and alanine aminotransferase. We conclude that a long period of sprint training induces a biochemical muscle adaptation to anaerobic exercise. This metabolic adaptation is followed by a morphological adaptation, although this is probably not as specific as the biochemical one.

Journal ArticleDOI
TL;DR: Enhanced rates of adenylate kinase activity, equivalent to processing all the cellular ATP and ADP in approximately 1 min, occur when levels of ATP, ADP, and AMP are maintained very near their basal steady state, demonstrating that rapid rates of AMP production from ADP are balanced by equally rapid ratesof AMP phosphorylation with no net synthesis or accumulation of any adenine nucleotide.

Journal ArticleDOI
TL;DR: A preferential involvement of pyrophosphate:fructose 6-phosphate 1-ph phosphotransferase rather than of ATP-dependent phosphofructokinase in glycolysis during anaerobiosis is suggested.
Abstract: Rice (Oryza sativa) seeds were imbibed for 3 days and the seedlings were further incubated for 8 days in the presence of either air or nitrogen. In aerobiosis, the specific activity of pyrophosphate:fructose 6-phosphate 1-phosphotransferase and that of the ATP-dependent phosphofructokinase increased about fourfold. In anaerobiosis, the specific activity of ATP-dependent phosphofructokinase remained stable, whereas that of pyrophosphate:fructose 6-phosphate 1-phosphotransferase increased as much as in the presence of oxygen and there was also a fourfold increase in the concentration of fructose 2,6-bisphosphate, a potent stimulator of that enzyme. These data suggest a preferential involvement of pyrophosphate:fructose 6-phosphate 1-phosphotransferase rather than of ATP-dependent phosphofructokinase in glycolysis during anaerobiosis.

Journal ArticleDOI
TL;DR: A model for the regulation of carbon partitioning from starch to respiration and N assimilation in the green alga Selenastrum minutum is proposed and evidence for both a cytosolic and plastidic fructose-1,6-bisphosphatase is provided.
Abstract: The assimilation of NH4+ causes a rapid increase in respiration to provided carbon skeletons for amino acid synthesis. In this study we propose a model for the regulation of carbon partitioning from starch to respiration and N assimilation in the green alga Selenastrum minutum. We provide evidence for both a cytosolic and plastidic fructose-1,6-bisphosphatase. The cytosolic form is inhibited by AMP and fructose-1,6-bisphosphate and the plastidic form is inhibited by phosphate. There is only one ATP dependent phosphofructokinase which, based on immunological cross reactivity, has been identified as being localized in the plastid. It is inhibited by phosphoenolpyruvate and activated by phosphate. No pyrophosphate dependent phosphofructokinase was found. The initiation of dark ammonium assimilation resulted in a transient increase in ADP which releases pyruvate kinase from adenylate control. This activation of pyruvate kinase causes a rapid 80% drop in phosphoenolpyruvate and a 2.7-fold increase in pyruvate. The pyruvate kinase mediated decrease in phosphoenolpyruvate correlates with the activation of the ATP dependent phosphofructokinase increasing carbon flow through the upper half of glycolysis. This increased the concentration of triosephosphate and provided substrate for pyruvate kinase. It is suggested that this increase in triosephosphate coupled with the glutamine synthetase mediated decline in glutamate, serves to maintain pyruvate kinase activation once ADP levels recover. The initiation of NH4+ assimilation causes a transient 60% increase in fructose-2,6-bisphosphate. Given the sensitivity of the cytosolic fructose-1,6-bisphosphatase to this regulator, its increase would serve to inhibit cytosolic gluconeogenesis and direct the triosephosphate exported from the plastid down glycolysis to amino acid biosynthesis.

Journal ArticleDOI
TL;DR: The results suggest that although the inhibition of the mitochondrial ATPase makes a major contribution to ATP conservation in ischemic dog heart, it makes only a very small contribution in rat.
Abstract: In the present study, isolated dog and rat hearts were perfused in the Langendorff mode with Krebs bicarbonate buffer in the absence and presence of 10(-5) M oligomycin. The perfusion protocols employed allowed tissue pH to drop during subsequent ischemic incubations essentially as it would in blood-perfused hearts. Tissue pH, ATP, lactate, and mitochondrial respiratory function were measured during the course of subsequent zero-flow ischemic incubations. The adenosinetriphosphatase (ATPase) activities attributable to both mitochondrial and nonmitochondrial ATPases in sonicated heart homogenates and the actomyosin ATPase in isolated cardiac myofibrils were measured in both species. Consistent with earlier results with a different model in which tissue pH was buffered during the ischemic incubations [W. Rouslin, J. L. Erickson, and R. J. Solaro. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H503-H508, 1986], the inhibition of the mitochondrial ATPase in situ by oligomycin markedly slowed both tissue ATP depletion and the loss of mitochondrial function during ischemia in the dog. However, oligomycin had only a very small and transient effect on ATP depletion and mitochondrial function in the rat. This was apparently so because of the fivefold higher rate of glycolytic ATP production as well as the nearly threefold higher total nonmitochondrial ATPase activity of ischemic rat compared with ischemic dog heart. These results suggest that although the inhibition of the mitochondrial ATPase makes a major contribution to ATP conservation in ischemic dog heart, it makes only a very small contribution in rat.

Journal ArticleDOI
TL;DR: It is suggested that a high ATP turnover rate during conditions of metabolic stress results in transient increases in ADP and AMP at the site of ATP hydrolysis and that these activate AMP deaminase and glycolysis.
Abstract: Deamination of AMP to inosine monophosphate (IMP) and NH3 is thought to be regulated by the observed increases in ADP, AMP, and H+. We have examined this hypothesis by comparing the rate of IMP accumulation in contracting and noncontracting rat skeletal muscle. The rate of IMP formation was high during ischemic contraction, and consistent with previous studies, formation of IMP was associated with high levels of muscle lactate, depletion of phosphocreatine (PCr), and increased levels of ADP and AMP. When the contraction period was followed by 5-min anoxic recovery, the metabolic changes were maintained, but no further IMP or lactate was formed. During long-term (2-4 h) anoxia, the rate of IMP formation was less than 4% of that during contraction, despite similar changes in PCr, lactate, ADP, and AMP. It is concluded that the observed changes in the intracellular chemical environment are not sufficient to explain the high rate of IMP formation during contraction but that a combination of metabolic stress and a high ATP turnover rate is required. It is suggested that a high ATP turnover rate during conditions of metabolic stress results in transient increases in ADP and AMP at the site of ATP hydrolysis and that these activate AMP deaminase and glycolysis. An alternative hypothesis is that these processes are regulated by the increase in cytosolic Ca2+ in a contracting muscle.

Journal ArticleDOI
TL;DR: Molecular cloning of the cDNA encoding PF-2-K/Fru-2,6-P2ase has elucidated its structure and permitted analysis of its evolutionary origin as well as its tissue distribution and control of its gene expression.
Abstract: Hormonal regulation of hepatic gluconeogenic pathway flux is brought about by phosphorylation/dephosphorylation and control of gene expression of several key regulatory enzymes Regulation by cAMP dependent phosphorylation occurs at the level of pyruvate kinase and 6-phosphofructo-2-kinase (6PF-1-K)/fructose-2,6-bisphosphatase (Fru-2,6-P 2 ase) The latter is a unique bifunctional enzyme that catalyzes both the synthesis and degradation of fructose-2,6-bisphosphate (Fru-2,6-P 2 ), which is an activator of 6PF-1-K and an inhibitor of Fru-1,6-P 2 ase The bifunctional enzyme is a homodimer whose activities are regulated by cAMP dependent protein kinase-catalyzed phosphorylation at a single NH 2 -terminal seryl residue/subunit, which results in activation of the Fru-2,6-P 2 ase and inhibition of the PF-1-K reactions Hormone-mediated changes in the phosphorylation state of the bifunctional enzyme are responsible for acute regulation of Fru-2,6-P 2 levels 6PF-2-K/Fru-2,6-P 2 ase thus provides a switching mechanism between glycolysis and gluconeogenesis in mammalian liver Pyruvate kinase is regulated by both phosphorylation and allosteric effectors Fru-1,6-P 2 , an allosteric activator, also inhibits cAMP-dependent enzyme phosphorylation, and its steady-state concentration is indirectly determined by the level of Fru-2,6-P 2 Therefore, acute regulation of both pyruvate kinase and the bifunctional enzyme provide coordinated control at both the pyruvate/phosphoenolpyruvate and Fru-6-P/Fru-1,6-P 2 substrate cycles The Fru-2,6-P 2 system is also subject to complex multihormonal long-term control through regulation of 6 PF-2-K/Fru-2,6-P 2 ase gene expression Glucocorticoids are the major factor in turning on this gene in liver, but insulin is also a positive effector cAMP prevents the effects of glucocorticoids and insulin Although Fru-2,6-P 2 plays a key role in the regulation of carbon flux in the gluconeogenic pathway, the regulation of this flux depends on several factors and regulation of other key enzymes whose importance varies depending on the dietary and hormonal status of the animal Molecular cloning of the cDNA encoding PF-2-K/Fru-2,6-P 2 ase has elucidated its structure and permitted analysis of its evolutionary origin as well as its tissue distribution and control of its gene expression The rat liver and skeletal muscle isoforms arose by alternative splicing of a single gene The muscle form differs from the liver form only at the NH 2 -terminal and does not have a cAMP dependent protein kinase phosphorylation site The hepatic enzyme subunit consists of 470 amino acids The NH 2 -terminal half of the subunit contains the 6PF-2-K domain (residues 1–250), and the COOH-terminal half contains the Fru-2,6-P 2 ase domain (residues 251–470) The bisphosphatase reaction is catalyzed via a phosphohistidine enzyme intermediate This Fru-2,6-P 2 ase domain is evolutionarily related to the phosphoglycerate mutase family of enzymes, which also utilize phosphohistidine in their reaction pathway The 6PF-2-K domain contains a nucleotide binding fold analogous to that found in bacterial 6PF-1-K On the basis of these findings, the bifunctional enzyme was formed by a gene fusion event involving two glycolytic enzyme catalytic units, ie, phosphoglycerate mutase and 6PF-1-K The importance of this system in the regulation of carbohydrate metabolism in many cell types makes it an ideal system to use in molecular approaches to the definitive study of pathway flux and rate-controlling enzymes

Journal ArticleDOI
TL;DR: In this article, the effects of inhibition of mitochondrial energy production at various points along the respiratory chain on glycolytic lactate production and transport function were examined in a suspension of purified rabbit renal proximal tubules.
Abstract: The effects of inhibition of mitochondrial energy production at various points along the respiratory chain on glycolytic lactate production and transport function were examined in a suspension of purified rabbit renal proximal tubules. Paradoxically, partial blockage at site 3 by hypoxia (1% O2) induced lactate production, whereas total site 3 blockage by anoxia (0% O2) failed to stimulate glycolysis. Compared with anoxia, hypoxic tubules exhibited greater preservation of ATP and K+ contents during O2 deprivation and more fully recovered oxidative metabolism and transport function during reoxygenation. The mitochondrial site 1 inhibitor rotenone and the uncoupler carbonyl cyanide-p-trifluorome-thoxyphenylhydrazone (FCCP) were equipotent stimuli for lactate production, whereas the site 2 inhibitor antimycin A failed to stimulate glycolysis despite a 90% inhibition of O2 consumption. Compared with antimycin A, treatment with rotenone or FCCP resulted in less cell injury [measured by lactate dehydrogenase (LDH) release] and greater preservation of cell K+ and ATP contents. 2-Deoxyglucose blocked lactate production by 50% in the presence of rotenone and increased LDH release, suggesting that glycolytic ATP is partially protective. Addition of ouabain during rotenone treatment reduced lactate production by 50%, indicating that glycolytic ATP can be used to fuel the Na pump when mitochondrial ATP production is inhibited. We conclude that 1) proximal tubules can generate lactate during inhibition of oxidative metabolism by hypoxia, rotenone, or FCCP; 2) mitochondrial inhibition is not obligatorily linked to activation of glycolysis, since neither anoxia nor antimycin A stimulate lactate production; 3) when ATP can be produced through anaerobic glycolysis it serves to protect cell viability and transport function during respiratory inhibition.

Journal ArticleDOI
TL;DR: The present study supports the view that the origin of the glucose disposal by the tumor is multifactorial, rather than being oxidized in the mitochondria.

Journal ArticleDOI
TL;DR: The effects of glyceraldehyde suggest that glucose signals the first phase of insulin release by an agonist-like mechanism that originates in the cytosol and requires minimal energy, while the effects of monomethyl succinate suggest that the signal for the second phase of glucose-induced insulin release originating in the mitochondrion and requires a large amount of energy.

Journal ArticleDOI
TL;DR: This investigation would indicate that if there is a mitochondrial contribution to the parasite ATP pool it is relatively small, and that a short-fall in this contribution is quickly compensated for by ATP from other source(s), although this is not necessarily met by increased glycolysis.
Abstract: 1. The effects of mitochondrial inhibitors on the ATP levels of intraerythrocytic Plasmodium falciparum have been studied. 2. Changes in parasite ATP or ADP levels with time in response to various mitochondrial inhibitors appear quite complex; ATP levels may be initially depressed and then elevated above normal, but the nature of the response depends upon the stage in the intraerythrocytic cycle and in some cases upon the concentration of the inhibitor used. 3. After ca 2 hr incubation of cultures with inhibitors ATP levels appear to be stabilized and are similar to those of untreated parasites. However, ADP levels of trophozoites show significant increases after a 2 hr incubation with inhibitors, particularly with oligomycin and to a lesser extent with antimycin A; increases in ADP levels however were not observed in ring-stages of the parasite. 4. Inhibition of red cell and parasite glycolysis leads to rapid decreases in parasite ATP levels which are not significantly affected by oligomycin. Incubation of in vitro cultures with oligomycin can result in a decreased, rather than increased rate of lactate production with a concomitant appearance of pyruvate in the growth medium. 5. This investigation would indicate that if there is a mitochondrial contribution to the parasite ATP pool it is relatively small, and that a short-fall in this contribution is quickly compensated for by ATP from other source(s), although this is not necessarily met by increased glycolysis.