scispace - formally typeset
Search or ask a question
Topic

Glycolysis

About: Glycolysis is a research topic. Over the lifetime, 10593 publications have been published within this topic receiving 507460 citations. The topic is also known as: GO:0006096 & glycolysis.


Papers
More filters
Book ChapterDOI
01 Jan 1980
TL;DR: This chapter discusses the regulation of glycolysis and the pentose phosphate pathway, which are the two main pathways of carbohydrate degradation in plants.
Abstract: Publisher Summary This chapter discusses the regulation of glycolysis and the pentose phosphate pathway. Glycolysis and the pentose phosphate pathway are the two main pathways of carbohydrate degradation in plants. Sucrose and starch are the principal sources of substrates for glycolysis in plants. The enzymes involved in the breakdown of sucrose and starch in plants do not appear to have regulatory properties. The localization of metabolic pathways in subcellular compartments is an aspect of control that has significance for the regulation of carbohydrate metabolism in plants. The chapter presents compartmentation of the enzymes glycolysis. Glycolysis occurs in plastids and in the cytoplasm of plant tissues; the reactions in the respective compartments are catalyzed by separate isoenzymes. The relative amounts of plastid and cytoplasmic isoenzymes differ for the various glycolytic reactions and depend on the type of tissue and its stage of development.

177 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the transition from a reliance on glycolysis to oxidative phosphorylation in a transformed cell line is dependent on an increase in the levels and activity of sirtuin-3, and this results might have important implications for the role of sirting-3 in the metabolism of some cancer cells and their susceptibility to mitochondrial injury and cytotoxicity.
Abstract: We demonstrate that the transition from a reliance on glycolysis to oxidative phosphorylation in a transformed cell line is dependent on an increase in the levels and activity of sirtuin-3. Sirtuin-3 deacetylates cyclophilin D, diminishing its peptidyl-prolyl cis-trans isomerase activity and inducing its dissociation from the adenine nucleotide translocator. Moreover, the sirtuin-3-induced inactivation of cyclophilin D causes a detachment of hexokinase II from the mitochondria that is necessary for stimulation of oxidative phosphorylation. These results might have important implications for the role of sirtuin-3 in the metabolism of some cancer cells and their susceptibility to mitochondrial injury and cytotoxicity.

177 citations

Journal ArticleDOI
TL;DR: The quadriceps femoris muscles of seven men were electrically stimulated under extended anaerobic conditions to quantitate an aerobic energy release and the contribution of the glycolytic system to total ATP production andglycolysis produced approximately 195 mmol ATP/kg dry muscle during the initial 48 contractions and only approximately 15 mmol ATP-1 X s-1 during the final 16 contractions.
Abstract: The quadriceps femoris muscles of seven men were electrically stimulated under extended anaerobic conditions to quantitate anaerobic energy release and the contribution of the glycolytic system to total ATP production. Muscles were intermittently stimulated 64 times at 20 Hz while leg blood flow was occluded. Each contraction lasted 1.6 s and was followed by 1.6 s of rest. The total contraction time was 102.4 s. Muscle biopsies were taken at rest and following 16, 32, 48, and 64 contractions. The ATP turnover rates during the four 16-contraction periods were 6.12, 2.56, 2.17, and 0.64 mmol X kg dry muscle-1 X s-1 contraction time. Glycolysis provided 58%, phosphocreatine 40% and a decreased ATP store 2% of the consumed energy during the initial 16 contractions. Glycolysis was responsible for 90% of the total ATP production beyond contraction 16. Absolute glycolytic ATP production decreased to 60, 55, and 17% of the amount in the initial 16 contractions during the final three periods, respectively. In conclusion glycolysis produced approximately 195 mmol ATP/kg dry muscle during the initial 48 contractions (76.8 s) and only approximately 15 mmol ATP/kg dry muscle during the final 16 contractions. Equivalent values for total ATP turnover were 278 and 16.5 mmol/kg dry muscle.

176 citations

Journal ArticleDOI
TL;DR: The results indicate that the major mechanism by which 2-DG stimulates autophagy is through ER stress/UPR and not by lowering ATP levels.
Abstract: The glucose analog and glycolytic inhibitor 2-deoxy-d-glucose (2-DG), which is currently under clinical evaluation for targeting cancer cells, not only blocks glycolysis thereby reducing cellular ATP, but also interferes with N-linked glycosylation, which leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). Both bioenergetic challenge and ER stress have been shown to activate autophagy, a bulk cellular degradation process that plays either a pro- or anti-death role. Here, we investigate which pathway 2-DG interferes with that activates autophagy and the role of this process in modulating 2-DG-induced toxicity. Pancreatic cancer cell line 1420, melanoma cell line MDA-MB-435 and breast cancer cell line SKBR3 were used to investigate the relationship between induction by 2-DG treatment of ER stress/UPR, ATP reduction and activation of autophagy. ER stress/UPR (Grp78 and CHOP) and autophagy (LC3B II) markers were assayed by immunoblotting, while ATP levels were measured using the CellTiter-Glo Luminescent Cell Viability Assay. Autophagy was also measured by immunofluorescence utilizing LC3B antibody. Cell death was detected with a Vi-Cell cell viability analyzer using trypan blue exclusion. In the three different cancer cell lines described earlier, we find that 2-DG upregulates autophagy, increases ER stress and lowers ATP levels. Addition of exogenous mannose reverses 2-DG-induced autophagy and ER stress but does not recover the lowered levels of ATP. Moreover, under anaerobic conditions where 2-DG severely depletes ATP, autophagy is diminished rather than activated, which correlates with lowered levels of the ER stress marker Grp78. Additionally, when autophagy is blocked by siRNA, cell sensitivity to 2-DG is increased corresponding with upregulation of ER stress-mediated apoptosis. Similar increased toxicity is observed with 3-methyladenine, a known autophagy inhibitor. In contrast, rapamycin which enhances autophagy reduces 2-DG-induced toxicity. Overall, these results indicate that the major mechanism by which 2-DG stimulates autophagy is through ER stress/UPR and not by lowering ATP levels. Furthermore, autophagy plays a protective role against 2-DG-elicited cell death apparently by relieving ER stress. These data suggest that combining autophagy inhibitors with 2-DG may be useful clinically.

176 citations

Journal ArticleDOI
TL;DR: Targeting key metabolic enzymes involved in modulating the “Warburg Effect” may provide a novel therapeutic approach either singularly or in combination with existing therapies in GBMs.
Abstract: Received: October 1, 2010 , Accepted: October 27, 2010 , Published: October 27, 2010 // A key aberrant biological difference between tumor cells and normal differentiated cells is altered metabolism, whereby cancer cells acquire a number of stable genetic and epigenetic alterations to retain proliferation, survive under unfavorable microenvironments and invade into surrounding tissues. A classic biochemical adaptation is the metabolic shift to aerobic glycolysis rather than mitochondrial oxidative phosphorylation, regardless of oxygen availability, a phenomenon termed the "Warburg Effect". Aerobic glycolysis, characterized by high glucose uptake, low oxygen consumption and elevated production of lactate, is associated with a survival advantage as well as the generation of substrates such as fatty acids, amino acids and nucleotides necessary in rapidly proliferating cells. This review discusses the role of key metabolic enzymes and their association with aerobic glycolysis in Glioblastoma Multiforme (GBM), an aggressive, highly glycolytic and deadly brain tumor. Targeting key metabolic enzymes involved in modulating the "Warburg Effect" may provide a novel therapeutic approach either singularly or in combination with existing therapies in GBMs.

176 citations


Network Information
Related Topics (5)
Gene expression
113.3K papers, 5.5M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
89% related
Receptor
159.3K papers, 8.2M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,429
20221,705
2021581
2020587
2019466
2018391