scispace - formally typeset
Search or ask a question
Topic

Glycolysis

About: Glycolysis is a research topic. Over the lifetime, 10593 publications have been published within this topic receiving 507460 citations. The topic is also known as: GO:0006096 & glycolysis.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.
Abstract: The relationships between Na/K pump activity and adenosine triphosphate (ATP) production were determined in isolated rat brain synaptosomes. The activity of the enzyme was modulated by altering [K+]e, [Na+]i, and [ATP]i while synaptosomal oxygen uptake and lactate production were measured simultaneously. KCl increased respiration and glycolysis with an apparent Km of about 1 mM which suggests that, at the [K+]e normally present in brain, 3.3-4 mM, the pump is near saturation with this cation. Depolarization with 6-40 mM KCl had negligible effect on ouabain-sensitive O2 uptake indicating that at the voltages involved the activity of the Na/K ATPase is largely independent of membrane potential. Increases in [Na+]i by addition of veratridine markedly enhanced glycoside-inhibitable respiration and lactate production. Calculations of the rates of ATP synthesis necessary to support the operation of the pump showed that greater than 90% of the energy was derived from oxidative phosphorylation. Consistent with this: (a) the ouabain-sensitive Rb/O2 ratio was close to 12 (i.e., Rb/ATP ratio of 2); (b) inhibition of mitochondrial ATP synthesis by Amytal resulted in a decrease in the glycoside-dependent rate of 86Rb uptake. Analyses of the mechanisms responsible for activation of the energy-producing pathways during enhanced Na and K movements indicate that glycolysis is predominantly stimulated by increase in activity of phosphofructokinase mediated via a rise in the concentrations of adenosine monophosphate [AMP] and inorganic phosphate [Pi] and a fall in the concentration of phosphocreatine [PCr]; the main moving force for the elevation in mitochondrial ATP generation is the decline in [ATP]/[ADP] [Pi] (or equivalent) and consequent readjustments in the ratio of the intramitochondrial pyridine nucleotides [( NAD]m/[NADH]m). Direct stimulation of pyruvate dehydrogenase by calcium appears to be of secondary importance. It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.

168 citations

Journal ArticleDOI
TL;DR: This new syndrome of fasting hypoglycaemia and metabolic acidosis seems to represent the clinical expression of impaired gluconeogenesis due to an inherited deficiency of hepatic fructose-1,6-diphosphatase.

168 citations

Journal ArticleDOI
TL;DR: A modeling framework, flux-balance analysis, was used to characterize the optimal flux distributions for maximal ATP production in the mitochondrion and predicts the secretion of TCA-cycle intermediates, which is observed in clinical studies of mitochondriopathies such as those associated with fumarase deficiency.
Abstract: Mitochondrial metabolism is a critical component in the functioning and maintenance of cellular organs. The stoichiometry of biochemical reaction networks imposes constraints on mitochondrial function. A modeling framework, flux-balance analysis (FBA), was used to characterize the optimal flux distributions for maximal ATP production in the mitochondrion. The model predicted the expected ATP yields for glucose, lactate, and palmitate. Genetic defects that affect mitochondrial functions have been implicated in several human diseases. FBA can characterize the metabolic behavior due to genetic deletions at the metabolic level, and the effect of mutations in the tricarboxylic acid (TCA) cycle on mitochondrial ATP production was simulated. The mitochondrial ATP production is severely affected by TCA-cycle mutations. In addition, the model predicts the secretion of TCA-cycle intermediates, which is observed in clinical studies of mitochondriopathies such as those associated with fumarase deficiency. The model provides a systemic perspective to characterize the effect of stoichiometric constraints and specific metabolic fluxes on mitochondrial function.

168 citations

Journal ArticleDOI
02 Sep 2011-PLOS ONE
TL;DR: Results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of Autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.
Abstract: Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography–mass spectrometry (LC-MS), to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

168 citations

Journal ArticleDOI
TL;DR: It is shown that Wnt suppresses mitochondrial respiration and cytochrome C oxidase (COX) activity by inhibiting the expression of 3 COX subunits, namely, COXVIc,COXVIIa, and COXVIIc.
Abstract: Wnt signaling plays a critical role in embryonic development, and its deregulation is closely linked to the occurrence of a number of malignant tumors, including breast and colon cancer. The pathway also induces Snail-dependent epithelial-to-mesenchymal transition (EMT), which is responsible for tumor invasion and metastasis. In this study, we show that Wnt suppresses mitochondrial respiration and cytochrome C oxidase (COX) activity by inhibiting the expression of 3 COX subunits, namely, COXVIc, COXVIIa, and COXVIIc. We found that Wnt induced a glycolytic switch via increased glucose consumption and lactate production, with induction of pyruvate carboxylase (PC), a key enzyme of anaplerosis. In addition, Wnt-induced mitochondrial repression and glycolytic switching occurred through the canonical β-catenin/T-cell factor 4/Snail pathway. Short hairpin RNA-mediated knockdown of E-cadherin, a regulator of EMT, repressed mitochondrial respiration and induced a glycolytic switch via Snail activation, indicating that EMT may contribute to Wnt/Snail regulation of mitochondrial respiration and glucose metabolism. Together, our findings provide a new function for Wnt/Snail signaling in the regulation of mitochondrial respiration (via COX gene expression) and glucose metabolism (via PC gene expression) in tumor growth and progression.

168 citations


Network Information
Related Topics (5)
Gene expression
113.3K papers, 5.5M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
89% related
Receptor
159.3K papers, 8.2M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,429
20221,705
2021581
2020587
2019466
2018391