scispace - formally typeset
Search or ask a question
Topic

Glycolysis

About: Glycolysis is a research topic. Over the lifetime, 10593 publications have been published within this topic receiving 507460 citations. The topic is also known as: GO:0006096 & glycolysis.


Papers
More filters
Journal ArticleDOI
TL;DR: An unexpected role is described for MIF in the regulation of glycolysis, which is associated with the recent finding that MIF is a positive, autocrine stimulator of insulin release, and suggest an important role for Mif in the control of host glucose disposal and carbohydrate metabolism.
Abstract: Severe infection or tissue invasion can provoke a catabolic response, leading to severe metabolic derangement, cachexia, and even death. Macrophage migration inhibitory factor (MIF) is an important regulator of the host response to infection. Released by various immune cells and by the anterior pituitary gland, MIF plays a critical role in the systemic inflammatory response by counterregulating the inhibitory effect of glucocorticoids on immune-cell activation and proinflammatory cytokine production. We describe herein an unexpected role for MIF in the regulation of glycolysis. The addition of MIF to differentiated L6 rat myotubes increased synthesis of fructose 2,6-bisphosphate (F2,6BP), a positive allosteric regulator of glycolysis. Increased expression of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) enhanced F2,6BP production and, consequently, cellular lactate production. The catabolic effect of TNF-alpha on myotubes was mediated by MIF, which served as an autocrine stimulus for F2, 6BP production. TNF-alpha administered to mice decreased serum glucose levels and increased muscle F2,6BP levels; pretreatment with a neutralizing anti-MIF mAb completely inhibited these effects. Anti-MIF also prevented hypoglycemia and increased muscle F2,6BP levels in TNF-alpha-knockout mice that were administered LPS, supporting the intrinsic contribution of MIF to these inflammation-induced metabolic changes. Taken together with the recent finding that MIF is a positive, autocrine stimulator of insulin release, these data suggest an important role for MIF in the control of host glucose disposal and carbohydrate metabolism.

156 citations

Journal ArticleDOI
TL;DR: It is reported that separating glycolysis and the pentose phosphate pathway highly increases cellular tolerance to 2-DG, indicating that 2- DG does not block cell growth solely by preventing glucose catabolism and processes beyond the metabolic block are essential for the biological properties of 2-G.
Abstract: The glucose analogue 2-deoxy-D-glucose (2-DG) restrains growth of normal and malignant cells, prolongs the lifespan of C. elegans, and is widely used as a glycolytic inhibitor to study metabolic activity with regard to cancer, neurodegeneration, calorie restriction, and aging. Here, we report that separating glycolysis and the pentose phosphate pathway highly increases cellular tolerance to 2-DG. This finding indicates that 2-DG does not block cell growth solely by preventing glucose catabolism. In addition, 2-DG provoked similar concentration changes of sugar-phosphate intermediates in wild-type and 2-DG-resistant yeast strains and in human primary fibroblasts. Finally, a genome-wide analysis revealed 19 2-DG-resistant yeast knockouts of genes implicated in carbohydrate metabolism and mitochondrial homeostasis, as well as ribosome biogenesis, mRNA decay, transcriptional regulation, and cell cycle. Thus, processes beyond the metabolic block are essential for the biological properties of 2-DG.

156 citations

Journal ArticleDOI
TL;DR: AMPK regulates infiltration of mitochondria into the leading edge of 2D lamellipodia and 3D invadopodia, coupling local metabolic sensing to subcellular targeting of mitochondia during cell movement.
Abstract: Cell migration is a complex behavior involving many energy-expensive biochemical events that iteratively alter cell shape and location. Mitochondria, the principal producers of cellular ATP, are dynamic organelles that fuse, divide, and relocate to respond to cellular metabolic demands. Using ovarian cancer cells as a model, we show that mitochondria actively infiltrate leading edge lamellipodia, thereby increasing local mitochondrial mass and relative ATP concentration and supporting a localized reversal of the Warburg shift toward aerobic glycolysis. This correlates with increased pseudopodial activity of the AMP-activated protein kinase (AMPK), a critically important cellular energy sensor and metabolic regulator. Furthermore, localized pharmacological activation of AMPK increases leading edge mitochondrial flux, ATP content, and cytoskeletal dynamics, whereas optogenetic inhibition of AMPK halts mitochondrial trafficking during both migration and the invasion of three-dimensional extracellular matrix. These observations indicate that AMPK couples local energy demands to subcellular targeting of mitochondria during cell migration and invasion.

156 citations

Journal ArticleDOI
TL;DR: It is suggested that the increased activity of some glycolytic enzymes may be, at least in part, the result of the reactive astrocytosis developing in the course of AD.
Abstract: The activities of hexokinase, aldolase, pyruvate kinase, lactate dehydrogenase and glucose 6-phosphate dehydrogenase were determined in brains of patients with Alzheimer's disease (AD) and in age matched controls. For pyruvate kinase and lactate dehydrogenase a significant increase in specific activity was found in frontal and temporal cortex of AD brains, while the activities of aldolase and hexokinase are not changed. Glucose 6-phosphate dehydrogenase activity was significantly reduced in hippocampus. The increase of some glycolytic enzyme activities is correlated with increased contents of lactate dehydrogenase and glial fibrillary acidic protein (GFAP) in homogenates of frontal and temporal cortex and elevated phosphofructokinase (PFK) and GFAP in astrocytes from the same brain areas. The data extend previous findings on an increase in brain PFK specific activity in AD and suggest that the increased activity of some glycolytic enzymes may be, at least in part, the result of the reactive astrocytosis developing in the course of AD.

156 citations

Journal ArticleDOI
TL;DR: The present observations establish that the regulation of glucagon secretion by glucose does not involve changes in α cell adenine nucleotides and further support the role of the ATP/ADP ratio in the control of insulin secretion.

156 citations


Network Information
Related Topics (5)
Gene expression
113.3K papers, 5.5M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
89% related
Receptor
159.3K papers, 8.2M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,429
20221,705
2021581
2020587
2019466
2018391