scispace - formally typeset
Search or ask a question
Topic

Glycolysis

About: Glycolysis is a research topic. Over the lifetime, 10593 publications have been published within this topic receiving 507460 citations. The topic is also known as: GO:0006096 & glycolysis.


Papers
More filters
Journal ArticleDOI
TL;DR: Oxidative stress that only occurs in glioblastoma multiforme cells underlies the selective susceptibility to glucose withdrawal–induced apoptosis documented in the malignant cells.
Abstract: Tumor cells rely preferentially on anaerobic glycolysis rather than on respiration for ATP generation, a phenomenon known as the Warburg effect. We explored the effects of glucose withdrawal on glioblastoma multiforme-derived cell lines and their nontransformed counterparts, normal human astrocytes. We found that glucose withdrawal induces extensive apoptosis in glioblastoma multiforme cells but not in normal astrocytes. In all cells examined, ATP levels are sustained on glucose withdrawal due to elevation of fatty acid oxidation and ensuing respiration; however, we show that oxidative stress generated in the mitochondrial respiratory chain is the direct cause of cell death in glioblastoma multiforme cells. Oxidative stress that only occurs in glioblastoma multiforme cells underlies the selective susceptibility to glucose withdrawal-induced apoptosis documented in the malignant cells. This study implicates glycolysis as a potentially efficient and selective target for glioblastoma multiforme treatment.

138 citations

Journal ArticleDOI
TL;DR: It is hypothesized that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards aerobic glycolysis observed in many tumors.
Abstract: MicroRNAs (miRNAs) are well recognized as gene regulators and have been implicated in the regulation of development as well as human diseases. miR-143 is located at a fragile site on chromosome 5 frequently deleted in cancer, and has been reported to be down-regulated in several cancers including colon cancer. To gain insight into the role of miR-143 in colon cancer, we used a microarray-based approach in combination with seed site enrichment analysis to identify miR-143 targets. As expected, transcripts down-regulated upon miR-143 overexpression had a significant enrichment of miR-143 seed sites in their 3'UTRs. Here we report the identification of Hexokinase 2 (HK2) as a direct target of miR-143. We show that re-introduction of miR-143 in the colon cancer cell line DLD-1 results in a decreased lactate secretion. We have identified and validated HK2 as a miR-143 target. Furthermore, our results indicate that miR-143 mediated down-regulation of HK2 affects glucose metabolism in colon cancer cells. We hypothesize that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards aerobic glycolysis observed in many tumors.

138 citations

Journal ArticleDOI
TL;DR: The data provide strong evidence that the Entner–Doudoroff pathway of glucose degradation, which has been previously long overlooked, operates in cyanobacteria and plants, and has lower protein costs and ATP yields than the EMP pathway, in line with the observation that oxygenic photosynthesizers are nutrient-limited, rather than ATP-limited.
Abstract: Glucose degradation pathways are central for energy and carbon metabolism throughout all domains of life. They provide ATP, NAD(P)H, and biosynthetic precursors for amino acids, nucleotides, and fatty acids. It is general knowledge that cyanobacteria and plants oxidize carbohydrates via glycolysis [the Embden-Meyerhof-Parnas (EMP) pathway] and the oxidative pentose phosphate (OPP) pathway. However, we found that both possess a third, previously overlooked pathway of glucose breakdown: the Entner-Doudoroff (ED) pathway. Its key enzyme, 2-keto-3-deoxygluconate-6-phosphate (KDPG) aldolase, is widespread in cyanobacteria, moss, fern, algae, and plants and is even more common among cyanobacteria than phosphofructokinase (PFK), the key enzyme of the EMP pathway. Active KDPG aldolases from the cyanobacterium Synechocystis and the plant barley (Hordeum vulgare) were biochemically characterized in vitro. KDPG, a metabolite unique to the ED pathway, was detected in both in vivo, indicating an active ED pathway. Phylogenetic analyses revealed that photosynthetic eukaryotes acquired KDPG aldolase from the cyanobacterial ancestors of plastids via endosymbiotic gene transfer. Several Synechocystis mutants in which key enzymes of all three glucose degradation pathways were knocked out indicate that the ED pathway is physiologically significant, especially under mixotrophic conditions (light and glucose) and under autotrophic conditions in a day/night cycle, which is probably the most common condition encountered in nature. The ED pathway has lower protein costs and ATP yields than the EMP pathway, in line with the observation that oxygenic photosynthesizers are nutrient-limited, rather than ATP-limited. Furthermore, the ED pathway does not generate futile cycles in organisms that fix CO2 via the Calvin-Benson cycle.

138 citations

Journal ArticleDOI
TL;DR: The results of anaerobic inhibition studies, which showed suppressive effects on acetate uptake by a glycolysis inhibitor (iodoacetate) but not by a membrane ATPase inhibitor (N,N′-dicyclohexyl carbodiimide), supported an assumption that glycogen degradation through glyCOlysis supplies the required ATP and reducing power for PHA synthesis from acetate and consumed glycogen.

138 citations

Journal ArticleDOI
TL;DR: Initial attempts to modulate cardiac energy metabolism by use of drugs or supplements as a therapeutic approach to heart disease are described.

138 citations


Network Information
Related Topics (5)
Gene expression
113.3K papers, 5.5M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
89% related
Receptor
159.3K papers, 8.2M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,429
20221,705
2021581
2020587
2019466
2018391