scispace - formally typeset
Search or ask a question
Topic

Glycolysis

About: Glycolysis is a research topic. Over the lifetime, 10593 publications have been published within this topic receiving 507460 citations. The topic is also known as: GO:0006096 & glycolysis.


Papers
More filters
Journal ArticleDOI
TL;DR: The metabolic reprogramming of cancer is discussed, possible explanations for the high glucose consumption in cancer cells observed by Warburg, and key experimental practices should be considered when studying the metabolism of cancer.
Abstract: Influential research by Warburg and Cori in the 1920s ignited interest in how cancer cells' energy generation is different from that of normal cells. They observed high glucose consumption and large amounts of lactate excretion from cancer cells compared with normal cells, which oxidised glucose using mitochondria. It was therefore assumed that cancer cells were generating energy using glycolysis rather than mitochondrial oxidative phosphorylation, and that the mitochondria were dysfunctional. Advances in research techniques since then have shown the mitochondria in cancer cells to be functional across a range of tumour types. However, different tumour populations have different bioenergetic alterations in order to meet their high energy requirement; the Warburg effect is not consistent across all cancer types. This review will discuss the metabolic reprogramming of cancer, possible explanations for the high glucose consumption in cancer cells observed by Warburg, and suggest key experimental practices we should consider when studying the metabolism of cancer.

332 citations

Journal ArticleDOI
TL;DR: This review is focused on the cellular fate of glucose and relevance to human type 2 diabetes and its role in pathogenesis of the disease.
Abstract: Type 2 diabetes is a complex disorder with diminished insulin secretion and insulin action contributing to the hyperglycemia and wide range of metabolic defects that underlie the disease. The contribution of glucose metabolic pathways per se in the pathogenesis of the disease remains unclear. The cellular fate of glucose begins with glucose transport and phosphorylation. Subsequent pathways of glucose utilization include aerobic and anaerobic glycolysis, glycogen formation, and conversion to other intermediates in the hexose phosphate or hexosamine biosynthesis pathways. Abnormalities in each pathway may occur in diabetic subjects; however, it is unclear whether perturbations in these may lead to diabetes or are a consequence of the multiple metabolic abnormalities found in the disease. This review is focused on the cellular fate of glucose and relevance to human type 2 diabetes.

331 citations

Journal ArticleDOI
TL;DR: It is shown that one isozyme, PFKFB3, is highly induced by hypoxia and thehypoxia mimics cobalt and desferrioxamine, and could be replicated by the use of an inhibitor of the prolyl hydroxylase enzymes responsible for the von Hippel Lindau (VHL)-dependent destabilization and tagging of HIF-1α.

331 citations

Journal ArticleDOI
27 Aug 1993-Cell
TL;DR: Strikingly, PCr levels decline normally during muscle exercise, suggesting that M-CK-mediated conversion is not the only route for PCr utilization in active muscle.

331 citations

Journal ArticleDOI
TL;DR: Mg(2+) inhibits citrate synthase slightly, but relieves the inhibition caused by ATP in a complex manner, and the pH optimum of the enzyme is 8.7, and is not significantly affected by ATP.
Abstract: 1. Citrate synthase (EC 4.1.3.7) was purified 750-fold from rat liver. 2. Measurements of the Michaelis constants for the substrates of citrate synthase gave values of 16mum for acetyl-CoA and 2mum for oxaloacetate. Each value is independent of the concentration of the other substrate. 3. The inhibition of citrate synthase by ATP, ADP and AMP is competitive with respect to acetyl-CoA. With respect to oxaloacetate the inhibition by AMP is competitive, but the inhibition by ADP and ATP is mixed, being partially competitive. 4. At low concentrations of both substrates the inhibition by ATP is sigmoidal and a Hill plot exhibits a slope of 2.5. 5. The pH optimum of the enzyme is 8.7, and is not significantly affected by ATP. 6. Mg(2+) inhibits citrate synthase slightly, but relieves the inhibition caused by ATP in a complex manner. 7. At constant total adenine nucleotide concentration made up of various proportions of ATP, ADP and AMP, the activity of citrate synthase is governed by the concentration of the sum of the energy-rich phosphate bonds of ADP and ATP. 8. The sedimentation coefficient of the enzyme, as measured by activity sedimentation, is 6.3s, equivalent to molecular weight 95000.

329 citations


Network Information
Related Topics (5)
Gene expression
113.3K papers, 5.5M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
89% related
Receptor
159.3K papers, 8.2M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,429
20221,705
2021581
2020587
2019466
2018391