scispace - formally typeset
Search or ask a question
Topic

Glycolysis

About: Glycolysis is a research topic. Over the lifetime, 10593 publications have been published within this topic receiving 507460 citations. The topic is also known as: GO:0006096 & glycolysis.


Papers
More filters
Journal ArticleDOI
TL;DR: A mechanism by which PKM2 promotes metabolic reprogramming is provided and it is suggested that it plays a broader role in cancer progression than has previously been appreciated.
Abstract: The maintenance of oxygen homeostasis is critical for survival, and the master regulator of this process in metazoan species is hypoxia-inducible factor 1 (HIF-1), which controls both O(2) delivery and utilization. Under conditions of reduced O(2) availability, HIF-1 activates the transcription of genes, whose protein products mediate a switch from oxidative to glycolytic metabolism. HIF-1 is activated in cancer cells as a result of intratumoral hypoxia and/or genetic alterations. In cancer cells, metabolism is reprogrammed to favor glycolysis even under aerobic conditions. Pyruvate kinase M2 (PKM2) has been implicated in cancer growth and metabolism, although the mechanism by which it exerts these effects is unclear. Recent studies indicate that PKM2 interacts with HIF-1α physically and functionally to stimulate the binding of HIF-1 at target genes, the recruitment of coactivators, histone acetylation, and gene transcription. Interaction with HIF-1α is facilitated by hydroxylation of PKM2 at proline-403 and -408 by PHD3. Knockdown of PHD3 decreases glucose transporter 1, lactate dehydrogenase A, and pyruvate dehydrogenase kinase 1 expression; decreases glucose uptake and lactate production; and increases O(2) consumption. The effect of PKM2/PHD3 is not limited to genes encoding metabolic enzymes because VEGF is similarly regulated. These results provide a mechanism by which PKM2 promotes metabolic reprogramming and suggest that it plays a broader role in cancer progression than has previously been appreciated.

291 citations

Journal ArticleDOI
TL;DR: This study provides a foundation for targeting metabolism for therapeutic benefit in melanoma by tracking metabolic flux using isotopically labeled nutrients and concludes that glutamine was a key nutrient providing a substantial anaplerotic contribution to the TCA cycle.

291 citations

Journal ArticleDOI
TL;DR: A reduced flux balance model of ATP production is studied that is constrained by the glucose uptake capacity and by the solvent capacity of the cell's cytoplasm, the latter quantifying the maximum amount of macromolecules that can occupy the intracellular space.
Abstract: Background: Cancer cells simultaneously exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen, a phenomenon known as the Warburg effect. The maintenance of this mixed metabolic phenotype is seemingly counterintuitive given that aerobic glycolysis is far less efficient in terms of ATP yield per moles of glucose than mitochondrial respiration. Results: Here, we resolve this apparent contradiction by expanding the notion of metabolic efficiency. We study a reduced flux balance model of ATP production that is constrained by the glucose uptake capacity and by the solvent capacity of the cell's cytoplasm, the latter quantifying the maximum amount of macromolecules that can occupy the intracellular space. At low glucose uptake rates we find that mitochondrial respiration is indeed the most efficient pathway for ATP generation. Above a threshold glucose uptake rate, however, a gradual activation of aerobic glycolysis and slight decrease of mitochondrial respiration results in the highest rate of ATP production. Conclusions: Our analyses indicate that the Warburg effect is a favorable catabolic state for all rapidly proliferating mammalian cells with high glucose uptake capacity. It arises because while aerobic glycolysis is less efficient than mitochondrial respiration in terms of ATP yield per glucose uptake, it is more efficient in terms of the required solvent capacity. These results may have direct relevance to chemotherapeutic strategies attempting to target cancer metabolism.

290 citations

Journal ArticleDOI
TL;DR: It is reported that hypoxia-inducible factor-1 induced pyruvate dehydrogenase kinase-3 (PDK3) expression leading to inhibition of mitochondrial respiration, and increased PDK3 expression due to elevated HIF-1α in cancer cells may play critical roles in metabolic switch during cancer progression and chemoresistance in cancer therapy.

290 citations

Journal ArticleDOI
TL;DR: A convenient approach is illustrated that capitalizes on the high information content of 13C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse cancers growing in their native microenvironment.
Abstract: Glioblastomas and brain metastases demonstrate avid uptake of 2-[(18) F]fluoro-2-deoxyglucose by positron emission tomography and display perturbations of intracellular metabolite pools by (1) H MRS. These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. 2-[(18) F]Fluoro-2-deoxyglucose-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation relative to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain cancers to oxidize glucose in the tricarboxylic acid cycle is unknown. Here, we studied the metabolism of human brain tumors in situ. [U-(13) C]Glucose (uniformly labeled glucose, i.e. d-glucose labeled with (13) C in all six carbons) was infused during surgical resection, and tumor samples were subsequently subjected to (13) C NMR spectroscopy. The analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the tricarboxylic acid cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-coenzyme A pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of (13) C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse cancers growing in their native microenvironment.

290 citations


Network Information
Related Topics (5)
Gene expression
113.3K papers, 5.5M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
89% related
Receptor
159.3K papers, 8.2M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,429
20221,705
2021581
2020587
2019466
2018391