scispace - formally typeset
Search or ask a question
Topic

GNSS augmentation

About: GNSS augmentation is a research topic. Over the lifetime, 2478 publications have been published within this topic receiving 28513 citations. The topic is also known as: SBAS & Satellite Based Augmentation System.


Papers
More filters
Proceedings ArticleDOI
29 Sep 2017
TL;DR: This contribution investigates how to overcome the real- time limitations and shows that real-time Precise Onboard Orbit Determination (P2OD) could be achieved in the near future, bringing the current ground PPP-RTK (Precise Point Positioning -Real Time Kinematic) concept to space users.
Abstract: Satellite orbit determination is a fundamental information for many space missions, several requiring a high level of orbit accuracy. Nowadays the Precise Orbit Determination (POD) is the technique routinely used on ground for computing the orbit of LEO missions, especially when the position of the satellite center of mass has to be known at cm level (e.g.: GRAS, Sentinels, SWARM, GOCE, etc.). The current POD approach must be performed only on ground in post-processing. The orbit accuracy achieved with the POD is typically between 0.1 mm/s to 1 mm/s for the velocity. Despite being in line with mission needs, the post-processing limitation is preventing its use for more advanced applications that require high accuracy in real-time, such as formation flying, autonomous docking and rendezvous, increased spacecraft autonomy, etc. This contribution investigates how to overcome the real-time limitations and shows that real-time Precise Onboard Orbit Determination (P2OD) could be achieved in the near future, bringing the current ground PPP (Precise Point Positioning) and PPP-RTK (Precise Point Positioning -Real Time Kinematic) concept to space users. The target real-time orbit accuracy to be achieved with this approach is 10 cm RMS 3D (1 mm/s for velocity). Different algorithms have already been developed for onboard orbit determination, ranging from a least square approach to Extended or Unscented Kalman Filtering (EKF, UKF). Usually the initial position is provided through a Single Point Positioning (SPP) technique, using only the pseudorange measurements. The SPP solution can be smoothed by fitting a dynamic model. These onboard algorithms allow to reach an orbital velocity accuracy (3D RMS) at m/s or cm/s level ([23], [24], [25], [26] and [27]). Several studies ([28], [29] and [30]) have also investigated the optimization of the force models acting on the satellites and the related parameters for propagating the orbit with the electronics onboard a LEO satellite. The main limitation for such onboard OD algorithms is the lack of precise ephemeris and clock products for the GNSS satellites in real-time. GNSS receivers in space can use techniques and concepts adoptable by GNSS receiver on ground. There are at least two main concepts for real-time high accuracy positioning computation based on GNSS: RTK and PPP. RTK relies on use of ground stations in the proximity of the user receiver, therefore cannot be considered viable from space users. PPP (and its evolution, the PPP-RTK) is based on the broadcast of precise corrections (mainly precise orbits and clocks, but also a precise ionospheric model and, for PPP-RTK, delta phase correction for performing Integer Ambiguity Resolution on the rover) through different communication channels (e.g., via geostationary satellites, GSM, Internet). This study addresses two main types of communication channels for providing precise orbit and clock corrections of the GNSS satellites: the dedicated broadcast and the global broadcast channels. The dedicated broadcast channel assumes that each GNSS satellite (e.g.: GPS or Galileo) broadcasts its own precise corrections for orbits and clocks. Such a condition could be achieved with an improvement of the current broadcasted ephemerides and clocks (via standard navigation message) or via a dedicated communication channel provided by the GNSS satellites that goes on top of the broadcasted navigation message. In this scenario the available bandwidth is normally limited, so the amount of corrections that can be disseminated is limited (allowing to transmit only the corrections for the satellite itself or a small group of nearby satellites) and there is a need for a constant communication contact from the uplink stations to all or a high number of the GNSS satellites. Modern GNSS systems are very close to provide the infrastructure to enable the dedicated broadcast scheme and the present study aims to propose potential strategies to overcome the current limitations. The global broadcast channel relies on geostationary satellites for disseminating the precise corrections for all the GNSS satellites at the same time. Two major cases are considered: SBAS and commercial PPP providers. SBAS is planned to achieve worldwide coverage by 2020, but the dissemination of precise corrections to achieve cm level accuracy is today outside the scope of such systems, mainly because providing the integrity for such an accuracy might be not easy to achieve. Nevertheless, a new service providing high accuracy corrections (initially without integrity) could be implemented using a potentially available spare bandwidth in the SBAS. Nowadays, commercial geostationary satellites are the only way to achieve the dissemination of precise corrections, using commercial PPP service providers that currently cover the entire globe. This work will analyze the implications of using such communication channels on the space receiver architecture. The adopted solution will be suitable for different types of 24h 3-axis stabilized LEO spacecraft, from nano-satellites to large Earth-observing satellites. A novel concept based on the use of multi-antennas will be proposed to overcome the weak communication links above the poles for receiving the corrections from geostationary satellites. The real-time precise orbit determination will be sequentially computed with an EKF-based OD algorithm. The approach will be validated using real data from flying missions. Finally, a potential roadmap for In-Orbit Demonstration (IOD) will be presented.

8 citations

Book ChapterDOI
01 Jan 2010
TL;DR: In this paper, the complementary nature of MEMS based pedestrian dead-reckoning (PDR) navigation and GNSS (Global Navigation Satellite System) has long been recognized for those applications requiring indoor positioning and that, for one reason or another, cannot rely on short-range infrastructure-based positioning systems (e.g., WiFi, UWB) to cope with the lack of availability of GNSS indoors.
Abstract: The complementary nature of MEMS based pedestrian dead-reckoning (PDR) navigation and GNSS (Global Navigation Satellite System) has long been recognized. The advantages are quite clear for those applications requiring indoor positioning and that, for one reason or another, cannot rely on short-range infrastructure-based positioning systems (e.g. WiFi, UWB) to cope with the lack of availability of GNSS indoors. One such example of application is firemen coordination during emergency interventions.

8 citations

Proceedings ArticleDOI
Jinbo Li1, Dongpo Chen1, Rui Guan1, Peng Qin1, Zhijian Lu1, Jianjun Zhou1 
20 May 2012
TL;DR: A novel frequency plan and a reconfigurable complex band-pass filter enable the two multi-mode reception channels to share most circuit blocks and thus reduce the power consumption and silicon area.
Abstract: the integration of Global Navigation Satellite Systems (GNSS) receiver with other wireless functionalities, e.g., GSM, WCDMA, LTE, Bluetooth, and WiFi, brings up new design challenges due to constrained silicon area and power consumption, and especially the interferences from other wireless functionalities. A dual-channel multi-mode GNSS RF receiver, for reception of GPS-L1, GLONASS-B1, Compass-B1, and Galileo-E1, is proposed to address these challenges. A novel frequency plan and a reconfigurable complex band-pass filter enable the two multi-mode reception channels to share most circuit blocks and thus reduce the power consumption and silicon area. An N-path filter and adaptive gain control is implemented in the RF front-end to reject the out-of-band interferences for high linearity. Designed in a 40nm CMOS, the proposed multi-mode GNSS RF receiver, including the RF front-end, baseband filter and ADC, PLL, and VCO, achieves a total noise figure of 1.7dB, out-of-band (1710MHz) input 1dB compression point of −16.5dBm, while consuming a total power of 13.2mW.

8 citations

Patent
06 Nov 2007
TL;DR: In this article, a first mobile GNSS receiver includes: a first receiver logic for receiving satellite signals and determining positioning related information according to the satellite signals; a data provider logic for providing at least an assisted data according to position related information; and a first communication interface for outputting the assisted data.
Abstract: A global navigation satellite system (GNSS) receiver system includes a first mobile GNSS receiver and a second mobile GNSS receiver. The first mobile GNSS receiver includes: a first receiver logic for receiving satellite signals and determining positioning related information according to the satellite signals; a data provider logic for providing at least an assisted data according to the positioning related information; and a first communication interface for outputting the assisted data. The second mobile GNSS receiver includes a second communication interface, for communicating with the first communication interface to receive the assisted data from the communication interface; a data collector logic for collecting assisted information from the assisted data; and a second receiver logic for determining positioning information of the second mobile GNSS receiver according to the assisted information and satellite signals.

8 citations

Journal ArticleDOI
TL;DR: In this article , the authors presented the BDS SBAS algorithms for these differential corrections in detail, and four types of Precise Point Positioning (PPP) function models for BDS dual-frequency (DF) and single-frequency (SF) users using the OSR and SSR parameters are also proposed.
Abstract: Abstract Satellite Based Augmentation System (SBAS) is one of the services provided by the BeiDou Navigation Satellite System (BDS). It broadcasts four types of differential corrections to improve user application performance. These corrections include the State Space Representation (SSR) based satellite orbit/clock corrections and ionospheric grid corrections, and the Observation Space Representation (OSR) based partition comprehensive corrections. The algorithms generating these SBAS corrections are not introduced in previous researches, and the user SBAS positioning performance with the contribution of BDS-3 has not been evaluated. In this paper, we present the BDS SBAS algorithms for these differential corrections in detail. Four types of Precise Point Positioning (PPP) function models for BDS Dual-Frequency (DF) and Single-Frequency (SF) users using the OSR and SSR parameters are also proposed. One week of data in 2020 is collected at 20 reference stations including the observations of both BeiDou-2 Navigation Satellite System (BDS-2) and BeiDou-3 Navigation Satellite System (BDS-3) satellites, and the PPP under various scenarios are performed using all the datasets and the BDS SBAS broadcast corrections. The results show that the performance of BDS-2/BDS-3 combination is superior to that of BDS-2 only constellation. The positioning errors in Root Mean Square (RMS) for the static DF PPP are better than 8 cm/15 cm in horizontal/vertical directions, while for the static SF PPP are 11 cm/24 cm. In the scenarios of simulated kinematic PPP, three Dimension (3D) positioning errors can reach 0.5 m in less than 10 min for the DF PPP and 30 min for the SF PPP, and the RMSs of the DF and SF PPP are better than 17 cm/21 cm and 20 cm/32 cm in horizontal/vertical directions. In a real-time single- and dual-frequency kinematic positioning test, the positioning errors of all three components can reach 0.5 m within 30 min, and the positioning accuracy after solution convergence in the N , E and U directions is better than 0.3 m.

8 citations


Network Information
Related Topics (5)
Radar
91.6K papers, 1M citations
82% related
Object detection
46.1K papers, 1.3M citations
73% related
Communications system
88.1K papers, 1M citations
72% related
Wireless sensor network
142K papers, 2.4M citations
72% related
Wireless
133.4K papers, 1.9M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023122
2022266
202144
202062
201956
201851