scispace - formally typeset
Search or ask a question
Topic

GNSS augmentation

About: GNSS augmentation is a research topic. Over the lifetime, 2478 publications have been published within this topic receiving 28513 citations. The topic is also known as: SBAS & Satellite Based Augmentation System.


Papers
More filters
Proceedings ArticleDOI
04 Jan 2016
TL;DR: This paper presents the use of a simulation environment to characterize the position estimation performance sensitivity of PPP/INS through a Monte Carlo analysis that is considered under various conditions, such as: the intensity of multipath errors, the number of phase breaks that occur in a flight, satellite geometry, atmospheric conditions, noise characteristics and grade of the inertial sensor, and accuracy of GPS orbit products.
Abstract: UAVs have the potential for autonomous airborne remote sensing applications that require rapid response to natural hazards (e.g.. volcano eruptions, earthquakes). As these applications require very accurate positioning, such as airborne Synthetic Aperture Radar, tightly coupled Global Positioning System (GPS) Precise Point Positioning (PPP) Inertial Navigation Systems (INS) are an attractive method to perform real-time aircraft positioning. In particular, PPP can achieve a level of positioning accuracy that is similar to Real-Time Kinematic (RTK) GPS, without the need of a relatively close GPS reference station. However, the PPP method is known to converge to accurate positioning more slowly when compared to RTK, a drawback of PPP that is amplified whenever the receiver platform is faced with GPS challenged environments, such as poor satellite visibility and frequent phase breaks. Unfortunately, these challenging conditions occur more often when the platform being positioned is an aircraft that experiences abrupt changes in attitude. In this paper we present the use of a simulation environment to characterize the position estimation performance sensitivity of PPP/INS through a Monte Carlo analysis that is considered under various conditions, such as: the intensity of multipath errors, the number of phase breaks that occur in a flight, satellite geometry, atmospheric conditions, noise characteristics and grade of the inertial sensor, and accuracy of GPS orbit products.

24 citations

Journal ArticleDOI
TL;DR: This paper proposes and demonstrates SBAS applicability to ionospheric and space weather research in a novel and cost‐effective way and vindicate the potential of SBAS over extended areas.
Abstract: Satellite-Based Augmentation Systems (SBASes) are designed to provide additional accuracy and robustness to existing satellite-based radio navigation systems for all phases of a flight. However, similar to navigation systems such as GPS which has proven its worth for the investigation of the ionosphere, the SBASes do have certain advantages. In the present paper, we propose and demonstrate SBAS applicability to ionospheric and space weather research in a novel and cost-effective way. The recent commissioning of the Indian SBAS, named GPS Aided Geo Augmented Navigation (GAGAN), covering the equatorial and low-latitude regions centered around the Indian longitudes provides the motivation for this approach. Two case studies involving different ionospheric behavior over low-latitude regions vindicate the potential of SBAS over extended areas.

24 citations

Proceedings ArticleDOI
25 Jun 2013
TL;DR: A quality monitoring algorithm, based on the application of a statistical testing, known as sign test, applied to the post correlation stage of a GNSS receiver, to detect signal distortions and to prevent degradations in the receiver positioning performance.
Abstract: The extremely low power of Global Navigation Satellite System (GNSS) signals makes them vulnerable to disturbances and interference from external sources. These induce distortions on the correlation function that reflect upon a degraded pseudoranges measurement and poor positioning accuracy. On the other hand, the wide spread use of GNSS receivers in critical applications demands for improved performance in terms of positioning accuracy and integrity. This paper proposes a new algorithm based on the statistical testing of post-correlation measurements to detect signal distortions and to prevent degradations in the receiver positioning performance. The application of statistical tests to GNSS is not yet deeply investigated, but some recent works already show good performance when Goodness of Fit (GoF) tests are applied to raw signal samples to detect interference. The paper presents a quality monitoring algorithm, based on the application of a statistical testing, known as sign test, applied to the post correlation stage of a GNSS receiver. Promising results are obtained to detect distortions in the correlation shape, for two different harsh environments, i.e., with the presence of interference sources and under a spoofing attack. The main advantages of the proposed method are the low complexity, the indipendence from the type of disturbance and the possibility of its application to any GNSS modulation.

24 citations

Journal ArticleDOI
24 Feb 2017-Sensors
TL;DR: An optimal single-frequency (SF) divergence-free Hatch filter that uses a satellite-based augmentation system (SBAS) message to reduce the ionospheric divergence and applies the optimal smoothing constant for its smoothing window width is proposed.
Abstract: The Hatch filter is a code-smoothing technique that uses the variation of the carrier phase. It can effectively reduce the noise of a pseudo-range with a very simple filter construction, but it occasionally causes an ionosphere-induced error for low-lying satellites. Herein, we propose an optimal single-frequency (SF) divergence-free Hatch filter that uses a satellite-based augmentation system (SBAS) message to reduce the ionospheric divergence and applies the optimal smoothing constant for its smoothing window width. According to the data-processing results, the overall performance of the proposed filter is comparable to that of the dual frequency (DF) divergence-free Hatch filter. Moreover, it can reduce the horizontal error of 57 cm to 37 cm and improve the vertical accuracy of the conventional Hatch filter by 25%. Considering that SF receivers dominate the global navigation satellite system (GNSS) market and that most of these receivers include the SBAS function, the filter suggested in this paper is of great value in that it can make the differential GPS (DGPS) performance of the low-cost SF receivers comparable to that of DF receivers.

24 citations

Proceedings ArticleDOI
01 Oct 2012
TL;DR: In this work GPS/GLONASS systems are combined and the benefits of the aforesaid aids are assessed, with main focus being the improvements in terms of integrity; single point GNSS and snapshot RAIM algorithms are herein considered.
Abstract: Urban canyon is a critical scenario for satellite navigation, because many GNSS signals are blocked by artificial obstacles or severely degraded; in standalone mode GPS, currently the main GNSS, cannot guarantee an accurate and continuous positioning. A possible approach to overcome these limitations is the use of multiple GNSS systems. GLONASS, the Russian navigation satellite system, is currently fully operational and is the main candidate to support this thesis. Urban scenario is mainly affected by multipath phenomenon, yielding several blunders into the measurements and unacceptable errors in the navigation solution. The integrity concept was introduced for safety-of-life application as aviation to provide timely warnings to users when a system should not be used for navigation, and then it was expanded to not safety-of-life service as urban navigation. RAIM (Receiver Autonomous Integrity Monitoring) techniques are user-level integrity methods based on consistency check of redundant measurements. This check is crucial because only at user-level certain local errors, such as multipath and local interferences, can be detected. Multi-constellation GNSS improves navigation solution in terms of accuracy and continuity; a further enhancement is achievable even in terms of integrity owing to the gained redundancy. The multi-constellation use implies a further unknown related to the intersystem time scale offset, requiring the “sacrifice” of one measurement. This parameter is observed to be quasi-constant in the short term, so an aiding can be introduced to account for its behavior. A similar approach can be adopted for altitude considering its slow variations in urban scenario. In this work GPS/GLONASS systems are combined and the benefits of the aforesaid aids are assessed, with main focus being the improvements in terms of integrity; single point GNSS and snapshot RAIM algorithms are herein considered. PVT and RAIM algorithms are developed in MatLab® environment and belong to a tool implemented by PANG (PArthenope Navigation Group).

24 citations


Network Information
Related Topics (5)
Radar
91.6K papers, 1M citations
82% related
Object detection
46.1K papers, 1.3M citations
73% related
Communications system
88.1K papers, 1M citations
72% related
Wireless sensor network
142K papers, 2.4M citations
72% related
Wireless
133.4K papers, 1.9M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023122
2022266
202144
202062
201956
201851