Topic

# Goal programming

About: Goal programming is a research topic. Over the lifetime, 4330 publications have been published within this topic receiving 117758 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this article, the authors present a survey of the state of the art in multiple criterion decision analysis (MCDA) with an overview of the early history and current state of MCDA.

Abstract: In two volumes, this new edition presents the state of the art in Multiple Criteria Decision Analysis (MCDA). Reflecting the explosive growth in the field seen during the last several years, the editors not only present surveys of the foundations of MCDA, but look as well at many new areas and new applications. Individual chapter authors are among the most prestigious names in MCDA research, and combined their chapters bring the field completely up to date. Part I of the book considers the history and current state of MCDA, with surveys that cover the early history of MCDA and an overview that discusses the “pre-theoretical” assumptions of MCDA. Part II then presents the foundations of MCDA, with individual chapters that provide a very exhaustive review of preference modeling, along with a chapter devoted to the axiomatic basis of the different models that multiple criteria preferences. Part III looks at outranking methods, with three chapters that consider the ELECTRE methods, PROMETHEE methods, and a look at the rich literature of other outranking methods. Part IV, on Multiattribute Utility and Value Theories (MAUT), presents chapters on the fundamentals of this approach, the very well known UTA methods, the Analytic Hierarchy Process (AHP) and its more recent extension, the Analytic Network Process (ANP), as well as a chapter on MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique). Part V looks at Non-Classical MCDA Approaches, with chapters on risk and uncertainty in MCDA, the decision rule approach to MCDA, the fuzzy integral approach, the verbal decision methods, and a tentative assessment of the role of fuzzy sets in decision analysis. Part VI, on Multiobjective Optimization, contains chapters on recent developments of vector and set optimization, the state of the art in continuous multiobjective programming, multiobjective combinatorial optimization, fuzzy multicriteria optimization, a review of the field of goal programming, interactive methods for solving multiobjective optimization problems, and relationships between MCDA and evolutionary multiobjective optimization (EMO). Part VII, on Applications, selects some of the most significant areas, including contributions of MCDA in finance, energy planning problems, telecommunication network planning and design, sustainable development, and portfolio analysis. Finally, Part VIII, on MCDM software, presents well known MCDA software packages.

4,055 citations

•

01 Jan 1967

TL;DR: The Simplex Method duality theory and sensitivity analysis for linear programming has been studied extensively in the field of operations research as mentioned in this paper, including the application of queueing theory inventory theory forecasting Markovian decision processes and applications decision analysis simulation.

Abstract: Overview of the operations research modelling approach introduction to linear programming solving linear programming problems - the Simplex Method the theory of the Simplex Method duality theory and sensitivity analysis other algorithms for linear programming the transportation and assignment problems network analysis, including Pert-CPM dynamic programming game theory integer programming non-linear programming Markov chains queueing theory the application of queueing theory inventory theory forecasting Markovian decision processes and applications decision analysis simulation.

3,830 citations

•

01 Aug 1989

TL;DR: Mathematical Background Topics from Linear Algebra Single Objective Linear Programming Determining all Alternative Optima Comments about Objective Row Parametric Programming Utility Functions, Nondominated Criterion Vectors and Efficient Points Point Estimate Weighted-sums Approach.

Abstract: Mathematical Background Topics from Linear Algebra Single Objective Linear Programming Determining all Alternative Optima Comments about Objective Row Parametric Programming Utility Functions, Nondominated Criterion Vectors and Efficient Points Point Estimate Weighted-sums Approach Optimal Weighting Vectors, Scaling and Reduced Feasible Region Methods Vector-Maximum Algorithms Goal Programming Filtering and Set Discretization Multiple Objective Linear Fractional Programming Interactive Procedures Interactive Weighted Tchebycheff Procedure Tchebycheff/Weighted-Sums Implementation Applications Future Directions Index.

3,280 citations

•

01 Jan 2007

TL;DR: This chapter discusses Deterministic Dynamic Programming, a model for nonlinear programming, and nonlinear Programming Algorithms, a system for solving linear programming problems.

Abstract: 1. Overview of Operations Research. I. DETERMINISTIC MODELS. 2. Introduction to Linear Programming. 3. The Simplex Method. 4. Duality and Sensitivity Analysis. 5. Transportation Model and Its Variants. 6. Network Models. 7. Advanced Linear Programming. 8. Goal Programming. 9. Integer Linear Programming. 10. Deterministic Dynamic Programming. 11. Deterministic Inventory Models. II. PROBABILISTIC MODELS. 12. Review of Basic Probability. 13. Forecasting Models. 14. Decision Analysis and Games. 15. Probabilistic Dynamic Programming. 16. Probabilistic Inventory Models. 17. Queueing Systems. 18. Simulation Modeling. 19. Markovian Decision Process. III. NONLINEAR MODELS. 20. Classical Optimization Theory. 21. Nonlinear Programming Algorithms. Appendix A: Review of Matrix Algebra. Appendix B: Introduction to Simnet II. Appendix C: Tora and Simnet II Installation and Execution. Appendix D: Statistical Tables. Appendix E: Answers to Odd-Numbered Problems. Index.

1,819 citations

•

01 Aug 1991

TL;DR: In this paper, the authors present a model-based approach to solving linear programming problems, which is based on the Gauss-Jordan method for solving systems of linear equations, and the Branch-and-Bound method for solving mixed integer programming problems.

Abstract: 1. INTRODUCTION TO MODEL BUILDING. An Introduction to Modeling. The Seven-Step Model-Building Process. Examples. 2. BASIC LINEAR ALGEBRA. Matrices and Vectors. Matrices and Systems of Linear Equations. The Gauss-Jordan Method for Solving Systems of Linear Equations. Linear Independence and Linear Dependence. The Inverse of a Matrix. Determinants. 3. INTRODUCTION TO LINEAR PROGRAMMING. What is a Linear Programming Problem? The Graphical Solution of Two-Variable Linear Programming Problems. Special Cases. A Diet Problem. A Work-Scheduling Problem. A Capital Budgeting Problem. Short-term Financial Planning. Blending Problems. Production Process Models. Using Linear Programming to Solve Multiperiod Decision Problems: An Inventory Model. Multiperiod Financial Models. Multiperiod Work Scheduling. 4. THE SIMPLEX ALGORITHM AND GOAL PROGRAMMING. How to Convert an LP to Standard Form. Preview of the Simplex Algorithm. The Simplex Algorithm. Using the Simplex Algorithm to Solve Minimization Problems. Alternative Optimal Solutions. Unbounded LPs. The LINDO Computer Package. Matrix Generators, LINGO, and Scaling of LPs. Degeneracy and the Convergence of the Simplex Algorithm. The Big M Method. The Two-Phase Simplex Method. Unrestricted-in-Sign Variables. Karmarkar"s Method for Solving LPs. Multiattribute Decision-Making in the Absence of Uncertainty: Goal Programming. Solving LPs with Spreadsheets. 5. SENSITIVITY ANALYSIS: AN APPLIED APPROACH. A Graphical Introduction to Sensitivity Analysis. The Computer and Sensitivity Analysis. Managerial Use of Shadow Prices. What Happens to the Optimal z-value if the Current Basis is No Longer Optimal? 6. SENSITIVITY ANALYSIS AND DUALITY. A Graphical Introduction to Sensitivity Analysis. Some Important Formulas. Sensitivity Analysis. Sensitivity Analysis When More Than One Parameter is Changed: The 100% Rule. Finding the Dual of an LP. Economic Interpretation of the Dual Problem. The Dual Theorem and Its Consequences. Shadow Prices. Duality and Sensitivity Analysis. 7. TRANSPORTATION, ASSIGNMENT, AND TRANSSHIPMENT PROBLEMS. Formulating Transportation Problems. Finding Basic Feasible Solutions for Transportation Problems. The Transportation Simplex Method. Sensitivity Analysis for Transportation Problems. Assignment Problems. Transshipment Problems. 8. NETWORK MODELS. Basic Definitions. Shortest Path Problems. Maximum Flow Problems. CPM and PERT. Minimum Cost Network Flow Problems. Minimum Spanning Tree Problems. The Network Simplex Method. 9. INTEGER PROGRAMMING. Introduction to Integer Programming. Formulation Integer Programming Problems. The Branch-and-Bound Method for Solving Pure Integer Programming Problems. The Branch-and-Bound Method for Solving Mixed Integer Programming Problems. Solving Knapsack Problems by the Branch-and-Bound Method. Solving Combinatorial Optimization Problems by the Branch-and-Bound Method. Implicit Enumeration. The Cutting Plane Algorithm. 10. ADVANCED TOPICS IN LINEAR PROGRAMMING. The Revised Simplex Algorithm. The Product Form of the Inverse. Using Column Generation to Solve Large-Scale LPs. The Dantzig-Wolfe Decomposition Algorithm. The Simplex Methods for Upper-Bounded Variables. Karmarkar"s Method for Solving LPs. 11. NONLINEAR PROGRAMMING. Review of Differential Calculus. Introductory Concepts. Convex and Concave Functions. Solving NLPs with One Variable. Golden Section Search. Unconstrained Maximization and Minimization with Several Variables. The Method of Steepest Ascent. Lagrange Multiples. The Kuhn-Tucker Conditions. Quadratic Programming. Separable Programming. The Method of Feasible Directions. Pareto Optimality and Tradeoff Curves. 12. REVIEW OF CALCULUS AND PROBABILITY. Review of Integral Calculus. Differentiation of Integrals. Basic Rules of Probability. Bayes" Rule. Random Variables. Mean Variance and Covariance. The Normal Distribution. Z-Transforms. Review Problems. 13. DECISION MAKING UNDER UNCERTAINTY. Decision Criteria. Utility Theory. Flaws in Expected Utility Maximization: Prospect Theory and Framing Effects. Decision Trees. Bayes" Rule and Decision Trees. Decision Making with Multiple Objectives. The Analytic Hierarchy Process. Review Problems. 14. GAME THEORY. Two-Person Zero-Sum and Constant-Sum Games: Saddle Points. Two-Person Zero-Sum Games: Randomized Strategies, Domination, and Graphical Solution. Linear Programming and Zero-Sum Games. Two-Person Nonconstant-Sum Games. Introduction to n-Person Game Theory. The Core of an n-Person Game. The Shapley Value. 15. DETERMINISTIC EOQ INVENTORY MODELS. Introduction to Basic Inventory Models. The Basic Economic Order Quantity Model. Computing the Optimal Order Quantity When Quantity Discounts Are Allowed. The Continuous Rate EOQ Model. The EOQ Model with Back Orders Allowed. Multiple Product Economic Order Quantity Models. Review Problems. 16. PROBABILISTIC INVENTORY MODELS. Single Period Decision Models. The Concept of Marginal Analysis. The News Vendor Problem: Discrete Demand. The News Vendor Problem: Continuous Demand. Other One-Period Models. The EOQ with Uncertain Demand: the (r, q) and (s,S models). The EOQ with Uncertain Demand: the Service Level Approach to Determining Safety Stock Level. Periodic Review Policy. The ABC Inventory Classification System. Exchange Curves. Review Problems. 17. MARKOV CHAINS. What is a Stochastic Process. What is a Markov Chain? N-Step Transition Probabilities. Classification of States in a Markov Chain. Steady-State Probabilities and Mean First Passage Times. Absorbing Chains. Work-Force Planning Models. 18.DETERMINISTIC DYNAMIC PROGRAMMING. Two Puzzles. A Network Problem. An Inventory Problem. Resource Allocation Problems. Equipment Replacement Problems. Formulating Dynamic Programming Recursions. The Wagner-Whitin Algorithm and the Silver-Meal Heuristic. Forward Recursions. Using Spreadsheets to Solve Dynamic Programming Problems. Review Problems. 19. PROBABILISTIC DYNAMIC PROGRAMMING. When Current Stage Costs are Uncertain but the Next Period"s State is Certain. A Probabilistic Inventory Model. How to Maximize the Probability of a Favorable Event Occurring. Further Examples of Probabilistic Dynamic Programming Formulations. Markov Decision Processes. Review Problems. 20. QUEUING THEORY. Some Queuing Terminology. Modeling Arrival and Service Processes. Birth-Death Processes. M/M/1/GD/o/o Queuing System and the Queuing Formula L=o W, The M/M/1/GD/o Queuing System. The M/M/S/ GD/o/o Queuing System. The M/G/ o/GD/oo and GI/G/o/GD/o/oModels. The M/ G/1/GD/o/o Queuing System. Finite Source Models: The Machine Repair Model. Exponential Queues in Series and Opening Queuing Networks. How to Tell whether Inter-arrival Times and Service Times Are Exponential. The M/G/S/GD/S/o System (Blocked Customers Cleared). Closed Queuing Networks. An Approximation for the G/G/M Queuing System. Priority Queuing Models. Transient Behavior of Queuing Systems. Review Problems. 21.SIMULATION. Basic Terminology. An Example of a Discrete Event Simulation. Random Numbers and Monte Carlo Simulation. An Example of Monte Carlo Simulation. Simulations with Continuous Random Variables. An Example of a Stochastic Simulation. Statistical Analysis in Simulations. Simulation Languages. The Simulation Process. 22.SIMULATION WITH PROCESS MODEL. Simulating an M/M/1 Queuing System. Simulating an M/M/2 System. A Series System. Simulating Open Queuing Networks. Simulating Erlang Service Times. What Else Can Process Models Do? 23. SPREADSHEET SIMULATION WITH @RISK. Introduction to @RISK: The Newsperson Problem. Modeling Cash Flows From A New Product. Bidding Models. Reliability and Warranty Modeling. Risk General Function. Risk Cumulative Function. Risktrigen Function. Creating a Distribution Based on a Point Forecast. Forecasting Income of a Major Corporation. Using Data to Obtain Inputs For New Product Simulations. Playing Craps with @RISK. Project Management. Simulating the NBA Finals. 24. FORECASTING. Moving Average Forecasting Methods. Simple Exponential Smoothing. Holt"s Method: Exponential Smoothing with Trend. Winter"s Method: Exponential Smoothing with Seasonality. Ad Hoc Forecasting, Simple Linear Regression. Fitting Non-Linear Relationships. Multiple Regression. Answers to Selected Problems. Index.

1,790 citations