scispace - formally typeset
Search or ask a question
Topic

Goldwasser–Micali cryptosystem

About: Goldwasser–Micali cryptosystem is a research topic. Over the lifetime, 540 publications have been published within this topic receiving 38037 citations. The topic is also known as: GM cryptosystem.


Papers
More filters
Journal ArticleDOI
TL;DR: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key.
Abstract: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: (1) Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intented recipient. Only he can decipher the message, since only he knows the corresponding decryption key. (2) A message can be “signed” using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in “electronic mail” and “electronic funds transfer” systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two large secret primer numbers p and q. Decryption is similar; only a different, secret, power d is used, where e * d ≡ 1(mod (p - 1) * (q - 1)). The security of the system rests in part on the difficulty of factoring the published divisor, n.

14,659 citations

Journal ArticleDOI
Taher Elgamal1
23 Aug 1985
TL;DR: A new signature scheme is proposed, together with an implementation of the Diffie-Hellman key distribution scheme that achieves a public key cryptosystem that relies on the difficulty of computing discrete logarithms over finite fields.
Abstract: A new signature scheme is proposed, together with an implementation of the Diffie-Hellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields.

7,514 citations

Book ChapterDOI
21 Jun 1998
TL;DR: NTRU encryption and decryption use a mixing system suggested by polynomial algebra combined with a clustering principle based on elementary probability theory to create a new public key cryptosystem.
Abstract: We describe NTRU, a new public key cryptosystem. NTRU features reasonably short, easily created keys, high speed, and low memory requirements. NTRU encryption and decryption use a mixing system suggested by polynomial algebra combined with a clustering principle based on elementary probability theory. The security of the NTRU cryptosystem comes from the interaction of the polynomial mixing system with the independence of reduction modulo two relatively prime integers p and q.

1,725 citations

Book ChapterDOI
Ronald Cramer1, Victor Shoup2
23 Aug 1998
TL;DR: In this paper, a new public key cryptosystem is proposed and analyzed, which is provably secure against adaptive chosen ciphertext attack under standard intractability assumptions. But the scheme is quite practical, and is not provable to be used in practice.
Abstract: A new public key cryptosystem is proposed and analyzed. The scheme is quite practical, and is provably secure against adaptive chosen ciphertext attack under standard intractability assumptions. There appears to be no previous cryptosystem in the literature that enjoys both of these properties simultaneously.

1,373 citations

Journal Article
Ronald Cramer1, Victor Shoup2
TL;DR: In this article, a new public key cryptosystem is proposed and analyzed, which is provably secure against adaptive chosen ciphertext attack under standard intractability assumptions. But the scheme is quite practical, and is not provable to be used in practice.
Abstract: A new public key cryptosystem is proposed and analyzed. The scheme is quite practical, and is provably secure against adaptive chosen ciphertext attack under standard intractability assumptions. There appears to be no previous cryptosystem in the literature that enjoys both of these properties simultaneously.

1,228 citations


Network Information
Related Topics (5)
Cryptography
37.3K papers, 854.5K citations
85% related
Public-key cryptography
27.2K papers, 547.7K citations
83% related
Encryption
98.3K papers, 1.4M citations
83% related
Hash function
31.5K papers, 538.5K citations
80% related
Key (cryptography)
60.1K papers, 659.3K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
20228
20202
20191
20184
201719