scispace - formally typeset
Search or ask a question
Topic

Gondwana

About: Gondwana is a research topic. Over the lifetime, 6078 publications have been published within this topic receiving 263050 citations. The topic is also known as: Gondwanaland.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the southwestern Gondwana basement block configuration in the central Argentinean offshore area was analyzed using gravimetric, magnetic and seismic data and existing onshore tectonic models.

96 citations

Journal ArticleDOI
TL;DR: The Cankoro Basin this article is interpreted as a part of a forearc basin with a local unconformity, and it includes more than 3 km of pre-middle Miocene in-fill related to late Cretaceous to pre-Middle Miocene evolution of the region.
Abstract: The Cankoro Basin straddles the Izmir-Ankara- Erzincan Suture Zone which demar- cates the former position of the northern branch of the Neotethys. It includes more than 3 km of pre-Middle Miocene in-fill related to late Cretaceous to pre-Middle Miocene evolution of the region. The basin has developed on the upper Cretaceous subduction complex and arc related basins of the Neotethys Ocean. The basin fill includes an upper Cretaceous forearc sequence over- lain by Paleocene with a local unconformity. The upper Cretaceous configuration of the Cankoro basin is interpreted as a part of a forearc basin. The Paleocene and younger history is interpreted as a foreland sequence dominated by progressively southwards migrated depocenters in front of southward migrating thrust faults upon which a series of piggy-back basins were developed. Ter- mination of the forearc setting and beginning of foreland basin conditions indicates complete sub- duction of the Neotethyan oceanic crust and onset of collision between the Pontides (Laurasia) and the Taurides (Gondwana) in the Paleocene. Thrusting and related sedimentation continued until the Aquitanian (Early Miocene).

96 citations

Book ChapterDOI
TL;DR: The upper allochthon of northwest Iberia represents the most exotic terrane of this part of the European Variscan belt and has been integrated into a synthesis of its tectonic evolution, constraining the main tectonothermal events as mentioned in this paper.
Abstract: The upper allochthon of northwest Iberia represents the most exotic terrane of this part of the European Variscan belt. Recent advances in the metamorphic petrology, structural geology, and geochronology of the upper allochthon in the Ordenes complex are integrated into a synthesis of its tectonic evolution, constraining the main tectonothermal events. Important aspects of this synthesis are (1) the interpretation of Cambro-Ordovician magmatism and earliest metamorphic event, as the result of drifting of a peri-Gondwanan terrane; (2) the subsequent shortening and crustal thickening of the terrane related to its subduction and accretion to Laurussia; (3) a younger cycle of shortening and extension resulting from convergence between Lau- russia and Gondwana; and (4) the emplacement of this exotic terrane as the upper allochthon, together with underlying ophiolitic and basal allochthons, during the Laurussia-Gondwana collision. Implications derived from the well-established tectonothermal sequence are discussed in the context of Paleozoic paleogeography and geodynamics. The evolution of this part of the belt is related first to the closure of the Tornquist Ocean, and later to that of the eastern branch of the Rheic Ocean. Furthermore, the relative paleopo- sitions of the upper allochthon and the Iberian autochthon in northern Gondwana are discussed. © 2007 Geological Society of America. All rights reserved.

96 citations

Journal ArticleDOI
TL;DR: The history of tectonic activity in the north-central Appalachians spans more than one billion years, from the assembly and breakup of a Neoproterozoic supercontinent, through active orogenesis during Laurentia9s Igozoic northward journey off the western margin of West Gondwana, to the Mesozoic transformation of the active Orogen into a passive margin during Pangea9s disassembly.
Abstract: The north-central Appalachians lie just southwest of the boundary between the central/southern and northern Appalachians, occupying a critical position within the 3000+ km-long Appalachian orogen. The history of tectonic activity in the north-central Appalachians spans more than one billion years, from the assembly and breakup of a Neoproterozoic supercontinent, through active orogenesis during Laurentia9s Paleozoic northward journey off the western margin of West Gondwana, to the Mesozoic transformation of the active orogen into a passive margin during Pangea9s disassembly. The major tectonic events include five compressional orogenies and two extensional episodes: 1. The late Mesoproterozoic Grenville orogeny assembled several continental masses into the Neoproterozoic supercontinent, Rodinia. It was the most widespread but now least exposed tectonism, and rocks involved in this event underlie as basement most of the exposed north-central Appalachians. Large fragments of Laurentian Grenville rock were subsequently broken off and incorporated in later Appalachian orogenesis. 2. Crustal extension and rifting late in the Neoproterozoic and into the earliest Cambrian separated Laurentia from West Gondwana, thereby forming the intervening Theic ocean and two continental rifts on Laurentia9s eastern margin, the Catoctin rift and, later in the Middle? to Late Cambrian, the so-called "Rome" trough. The initial siliciclastic sedimentation on the margin migrated westward through time onto the craton, supplanted by a thick and increasingly wide carbonate shelf on Laurentia9s eastern margin. Two microcontinents of Grenville-age, non-Laurentian(?) continental rock became positioned east of Laurentia, thereby creating the Octoraro sea as an arm of Theia. 3. In Theia, east of the two microcontinents, magmatic arcs developed over a subduction zone late in the Cambrian. Convergence within Theia caused the Potomac orogeny, which obduced the arcs (Wilmington Complex, Cecil Amalgamate) over the microcontinents and associated Theic deposits (including accretionary wedge sediments). 4. Continued westward convergence collapsed the Octoraro sea, producing the Middle to Late Ordovician Taconic orogeny in which the Potomac-deformed magmatic arcs and associated Theic elements were obduced onto the Laurentian continental margin. This obduction: drowned the carbonate shelf with siliciclastic sediments (Martinsburg Formation); drove continental rise and basinal deposits over the carbonate shelf on the Martic thrust; slid the Hamburg klippe onto the shelf; and accreted the Potomac package of microcontinent/arc/basinal-sediments onto the Laurentian margin. This orogeny transformed the broad Early Paleozoic carbonate shelf into the Appalachian basin that persisted throughout the Middle and Late Paleozoic. 5. The Middle Devonian Acadian orogeny ended the largely paralic environment that dominated the Appalachian basin during the Late Silurian. Active orogenesis in New England probably extended southward to the north-central Appalachians, because a vast amount of terrigenous sediment was introduced into the Appalachian basin to form the Catskill delta; however, evidence of actual Acadian deformation and metamorphism is lacking at this latitude. These presumed internal Acadides have yet to be found. 6. The convergence of West Gondwana and Laurentia during the Late Carboniferous and earliest Permian produced the Permian Alleghany orogeny in the north-central Appalachians. This widespread decollement tectonism directly affected a larger area of the presently exposed central and southern Appalachians than any earlier Paleozoic tectonic event. An early layer-parallel shortening phase gave way to a fold-thrust development above a basal decollement. This Alleghany fold-and-thrust tectonism created long, arcuate folds in the Appalachian basin. Late in the Alleghany orogeny, rock thrust northward over the Carboniferous rocks in the Anthracite region of northeastern Pennsylvania caused anthracitization of the underlying coals. The internal Alleghanides are not presently exposed. 7. Crustal extension in the Late Triassic and Early Jurassic produced numerous local, closed basins along eastern North America. Igneous intrusions and effusions marked the beginning of the Jurassic. By the end of the Early Jurassic, horizontal crustal rebound in response to opening of the Atlantic Ocean rotated the basins by crustal inversion, which folded some within-basin rocks and produced a prominent topographic ridge along the Piedmont, up-dip of the basins. Subsequent erosion of this Piedmont ridge and other parts of the Appalachian orogen fed large volumes of sediment to offshore basins during the remainder of the Mesozoic and throughout the Cenozoic. Each of these orogenies affected most of the Appalachian orogen. The tectonic expression of each orogeny varied along and across the orogen. The elements and structural bodies involved in each also varied along strike. However, many common elements persist from one part of the orogen to another; only a few features are singular in time and space. The tectonic boundary between the central and northern Appalachians is one of these singular features-it is solely an Alleghanian artifact.

96 citations

Journal ArticleDOI
TL;DR: In this paper, a magnetostratigraphic and geochronological study of late Permian sediments in the Karoo Basin of the Western Cape Province, South Africa was carried out.

96 citations


Network Information
Related Topics (5)
Sedimentary rock
30.3K papers, 746.5K citations
90% related
Continental crust
11.1K papers, 677.5K citations
90% related
Zircon
23.7K papers, 786.6K citations
89% related
Subduction
22.4K papers, 1.1M citations
88% related
Basalt
18.6K papers, 805.1K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023269
2022497
2021307
2020281
2019293
2018230