scispace - formally typeset
Search or ask a question
Topic

Gondwana

About: Gondwana is a research topic. Over the lifetime, 6078 publications have been published within this topic receiving 263050 citations. The topic is also known as: Gondwanaland.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates.

677 citations

Journal ArticleDOI
TL;DR: The broad succession of pre-angiosperm floras is documents, the distinctive elements of the Early Cretaceous Gondwanan floras immediately preceding the appearance of angiosperms are highlighted and it is suggested that latitudinal controls strongly influenced the composition of GONDwananFloras through time even in the absence of marine barriers between Gondwana and the northern continents.
Abstract: The concept of 'Gondwana', an ancient Southern Hemisphere supercontinent, is firmly established in geological and biogeographical models of Earth history. The term Gondwana (Gondwanaland of some authors) derives from the recognition by workers at the Indian Geological Survey in the mid- to late 19th century of a distinctive sedimentary sequence preserved in east central India. This succession, now known to range in age from Permian to Cretaceous, is lithologically and palaeontologically similar to coeval non-marine sedimentary successions developed in most of the Southern Hemisphere continents suggesting former continuity of these landmasses. Palaeomagnetic data and tectonic reconstructions suggest that the main assembly of Gondwana took place around the beginning of the Palaeozoic in near-equatorial latitudes and that the supercontinent as a whole shifted into high southern latitudes, allowing widespread glaciation by the end of the Carboniferous. From Carboniferous to Cretaceous times the southern continents had broadly similar floras but some species-level provincialism is apparent at all times. The break-up of Gondwana initiated during the Jurassic (at about 180 million years ago) and this process is continuing. The earliest rifting (crustal attenuation) within the supercontinent initiated in the west (between South America and Africa) and in general terms the rifting pattern propagated eastward with major phases of continental fragmentation in the Early Cretaceous and Late Cretaceous to Paleogene. Gondwanan floras show radical turnovers near the end of the Carboniferous, end of the Permian and the end of the Triassic that appear to be unrelated to isolation or fragmentation of the supercontinent. Throughout the late Palaeozoic and Mesozoic the high-latitude southern floras maintained a distinctly different composition to the palaeoequatorial and boreal regions even though they remained in physical connection with Laurasia for much of this time. Gondwanan floras of the Jurassic and Early Cretaceous (times immediately preceding and during break-up) were dominated by araucarian and podocarp conifers and a range of enigmatic seed-fern groups. Angiosperms became established in the region as early as the Aptian (before the final break-up events) and steadily diversified during the Cretaceous, apparently at the expense of many seed-fern groups. Hypotheses invoking vicariance or long distance dispersal to account for the biogeographic patterns evident in the floras of Southern Hemisphere continents all rely on a firm understanding of the timing and sequence of Gondwanan continental breakup. This paper aims to summarise the current understanding of the geochronological framework of Gondwanan breakup against which these biogeographic models may be tested. Most phytogeographic studies deal with the extant, angiosperm-dominated floras of these landmasses. This paper also presents an overview of pre-Cenozoic, gymnosperm-dominated, floristic provincialism in Gondwana. It documents the broad succession of pre-angiosperm floras, highlights the distinctive elements of the Early Cretaceous Gondwanan floras immediately preceding the appearance of angiosperms and suggests that latitudinal controls strongly influenced the composition of Gondwanan floras through time even in the absence of marine barriers between Gondwana and the northern continents. Go na br nd prn ti l S.ou

666 citations

Journal ArticleDOI
TL;DR: In this article, the authors used magnetic anomaly and fracture zone information to develop a self-consistent tectonic history of the Indian and South Atlantic oceans and made three reasonably well constrained (39, 53, and 65 Ma) and two speculative (80 and 115 Ma) reconstructions of the positions of the Gondwana continents.
Abstract: Magnetic anomaly and fracture zone information is used to develop a self-consistent tectonic history of the Indian and South Atlantic oceans. Working backward in time we have made three reasonably well constrained (39, 53, and 65 Ma) and two speculative (80 and 115 Ma) reconstructions of the positions of the Gondwana continents (Ma is m.y.B.P.). Our final fit, which is constrained by the recognition of Mesozoic anomalies off Antarctica and in the Mozambique Basin, places Dronning Maud Land against southern Mozambique and Madagascar in the northern position against Kenya. We suggest that after the initial rifting, Antarctica moved away from Africa in a southerly direction relative to present-day Africa. This started the formation of the Southwest Indian Ridge. Most of the present length and geometry of the ridge result from migration of triple junctions so do not reflect predrift continental outlines. India and Madagascar moved with Antarctica until India separated from first Antarctica then Madagascar, when it started moving north toward Asia. In our reconstructions we find no necessity for significant relative motion between the Antarctic Peninsula and South America from the early Cretaceous to the Oligocene. From the breakup of Gondwanaland to the present we identify seven significant events. These are (1) first break in the late Triassic/early Jurassic between East and West Gondwanaland with initial motion along long transform faults parallel to the present African east coast, (2) early Cretaceous separation of Africa and South America and possibly simultaneous separation between India and Australia-Antarctica, (3) cessation of motion between Africa and Madagascar, (4) break between India and Madagascar in the late Cretaceous, (5) Paleocene reorganization in the northwest Indian Ocean when the Seychelles left India, (6) Eocene separation between Australia and Antarctica with Australia joining the Indian plate, and (7) India's collision with Asia and subsequent commencement of spreading on the Central Indian Ridge, and later opening of Drake Passage.

653 citations

Journal ArticleDOI
TL;DR: A review of the current understanding of the many inherent tectonic problems of the Altaids can be found in this paper, which is timely and appropriate to present a review of current understanding.

633 citations

Journal ArticleDOI
TL;DR: The Tethysides are a superorogenic complex flanking the Eurasian continent to the south and consisting of the Cimmerides and Alpides, products of Palaeo- and Neo-Tethys respectively.
Abstract: The Tethysides are a superorogenic complex flanking the Eurasian continent to the south and consisting of the Cimmerides and Alpides , products of Palaeo- and Neo-Tethys respectively. We here review their evolution, mainly on the basis of new maps showing the distribution of sutures, magmatic rocks, certain palaeobiogeographically and palaeoclimatologically significant taxa and facies, and fragments of Pan-African (900–450 Ma) orogenic system forming the basement of many Tethyside blocks. These are supplemented by palaeomagnetic data reported in the literature. A fundamental tenet of this paper is that major sutures which contain ophiolite fragments, represent tectonic sections between continental blocks where oceanic crust has been subducted. Palaeo-Tethys came into existence largely in late Carboniferous time. Coevally, it began to be consumed by both internal and peripheral subduction zones, which continued into the Permian; some of these had been inherited from pre-Tethyan times. In the later Permian, rifting subparallel with the northern margin of Gondwana Land began between the Zagros and Malaysia, separating a Cimmerian continent from N. Gondwana Land, and thus heralding the opening of Neo-Tethys and other smaller oceans that were back-arc basins of Palaeo-Tethys. This rifting possibly also extended farther west into Crete and mainland Greece. However, the North China block, Yangtze block, Huanan block, the eastern moity of the Qangtang block (North Tibet), and Annamia, all originally pieces of the end-Proterozoic-early Palaeozoic Gondwana Land, had already separated from it in pre-late Carboniferous times, possibly during the Devonian. All of these blocks, and the Cimmerian continent, were characterized by Cathaysian floral elements in late Palaeozoic time. Palaeomagnetic and palaeontological data showing the original Gondwana Land affinity of these continental blocks are supplemented by correlating late Proterozoic-early Palaeozoic Pan-African sutures, orogenic belts, and sedimentary basin fragments across Tethyside sutures. Late Permian foraminiferal provinces are related to this palaeogeographical interpretation. By Triassic times, most Cimmeride subduction zones were already in existence. The Cimmerian Continent accelerated its separation from Gondwana Land and—locally in the late Permian—began disintegrating internally along the Waser/Rushan-Pshart/Banggong Co-Nu Jiang/Mandalay ocean. By late Triassic time all of the Chinese blocks—except Lhasa-and Annamia had collided with each other and with Laurasia. The resulting enormous orogenic collage had a ‘soft cushion’ between itself and Laurasia, in the form of the enormous accretionary complex of the Songpan-Ganzi. This connection enabled Laurasian land vertebrates to reach south-east Asia by late Triassic time. In late Triassic to middle Jurassic times, most major Cimmeride collisions were completed. Widespread aridity in Central Asia occurred in late Jurassic time, probably in the rain shadow of the newly formed Cimmeride mountain wall. Neo-Tethyan subduction systems formed along the S. margin of the Cimmerides or within Neo-Tethyan oceanic lithosphere during the Jurassic. Most, if not all, were north- or east-dipping. They continued the northerly migration of the Tethyside blocks. Evolution of the Tethysides influenced the distribution of marine and terrestrial organisms, and affected sea-level changes and patterns of atmospheric circulation during much of the Mesozoic and Cainozoic. It is likely to have reflected the surface expression of a persistent trend in the large-scale convective circulation in the mantle, that continuously transported material northward into the Tethyan domain.

629 citations


Network Information
Related Topics (5)
Sedimentary rock
30.3K papers, 746.5K citations
90% related
Continental crust
11.1K papers, 677.5K citations
90% related
Zircon
23.7K papers, 786.6K citations
89% related
Subduction
22.4K papers, 1.1M citations
88% related
Basalt
18.6K papers, 805.1K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023269
2022497
2021307
2020281
2019293
2018230