scispace - formally typeset
Search or ask a question
Topic

Goodness of fit

About: Goodness of fit is a research topic. Over the lifetime, 8541 publications have been published within this topic receiving 639277 citations.


Papers
More filters
Book
01 Dec 1969
TL;DR: The concepts of power analysis are discussed in this paper, where Chi-square Tests for Goodness of Fit and Contingency Tables, t-Test for Means, and Sign Test are used.
Abstract: Contents: Prefaces. The Concepts of Power Analysis. The t-Test for Means. The Significance of a Product Moment rs (subscript s). Differences Between Correlation Coefficients. The Test That a Proportion is .50 and the Sign Test. Differences Between Proportions. Chi-Square Tests for Goodness of Fit and Contingency Tables. The Analysis of Variance and Covariance. Multiple Regression and Correlation Analysis. Set Correlation and Multivariate Methods. Some Issues in Power Analysis. Computational Procedures.

115,069 citations

Journal ArticleDOI
TL;DR: In this article, the adequacy of the conventional cutoff criteria and several new alternatives for various fit indexes used to evaluate model fit in practice were examined, and the results suggest that, for the ML method, a cutoff value close to.95 for TLI, BL89, CFI, RNI, and G...
Abstract: This article examines the adequacy of the “rules of thumb” conventional cutoff criteria and several new alternatives for various fit indexes used to evaluate model fit in practice. Using a 2‐index presentation strategy, which includes using the maximum likelihood (ML)‐based standardized root mean squared residual (SRMR) and supplementing it with either Tucker‐Lewis Index (TLI), Bollen's (1989) Fit Index (BL89), Relative Noncentrality Index (RNI), Comparative Fit Index (CFI), Gamma Hat, McDonald's Centrality Index (Mc), or root mean squared error of approximation (RMSEA), various combinations of cutoff values from selected ranges of cutoff criteria for the ML‐based SRMR and a given supplemental fit index were used to calculate rejection rates for various types of true‐population and misspecified models; that is, models with misspecified factor covariance(s) and models with misspecified factor loading(s). The results suggest that, for the ML method, a cutoff value close to .95 for TLI, BL89, CFI, RNI, and G...

76,383 citations

Journal ArticleDOI
Jacob Cohen1
TL;DR: A convenient, although not comprehensive, presentation of required sample sizes is providedHere the sample sizes necessary for .80 power to detect effects at these levels are tabled for eight standard statistical tests.
Abstract: One possible reason for the continued neglect of statistical power analysis in research in the behavioral sciences is the inaccessibility of or difficulty with the standard material. A convenient, although not comprehensive, presentation of required sample sizes is provided here. Effect-size indexes and conventional values for these are given for operationally defined small, medium, and large effects. The sample sizes necessary for .80 power to detect effects at these levels are tabled for eight standard statistical tests: (a) the difference between independent means, (b) the significance of a product-moment correlation, (c) the difference between independent rs, (d) the sign test, (e) the difference between independent proportions, (f) chi-square tests for goodness of fit and contingency tables, (g) one-way analysis of variance, and (h) the significance of a multiple or multiple partial correlation.

38,291 citations

Journal ArticleDOI
TL;DR: A new coefficient is proposed to summarize the relative reduction in the noncentrality parameters of two nested models and two estimators of the coefficient yield new normed (CFI) and nonnormed (FI) fit indexes.
Abstract: Normed and nonnormed fit indexes are frequently used as adjuncts to chi-square statistics for evaluating the fit of a structural model A drawback of existing indexes is that they estimate no known population parameters A new coefficient is proposed to summarize the relative reduction in the noncentrality parameters of two nested models Two estimators of the coefficient yield new normed (CFI) and nonnormed (FI) fit indexes CFI avoids the underestimation of fit often noted in small samples for Bentler and Bonett's (1980) normed fit index (NFI) FI is a linear function of Bentler and Bonett's non-normed fit index (NNFI) that avoids the extreme underestimation and overestimation often found in NNFI Asymptotically, CFI, FI, NFI, and a new index developed by Bollen are equivalent measures of comparative fit, whereas NNFI measures relative fit by comparing noncentrality per degree of freedom All of the indexes are generalized to permit use of Wald and Lagrange multiplier statistics An example illustrates the behavior of these indexes under conditions of correct specification and misspecification The new fit indexes perform very well at all sample sizes

21,588 citations

Journal ArticleDOI
S. S. Shapiro1, M. B. Wilk1
TL;DR: In this article, a new statistical procedure for testing a complete sample for normality is introduced, which is obtained by dividing the square of an appropriate linear combination of the sample order statistics by the usual symmetric estimate of variance.
Abstract: The main intent of this paper is to introduce a new statistical procedure for testing a complete sample for normality. The test statistic is obtained by dividing the square of an appropriate linear combination of the sample order statistics by the usual symmetric estimate of variance. This ratio is both scale and origin invariant and hence the statistic is appropriate for a test of the composite hypothesis of normality. Testing for distributional assumptions in general and for normality in particular has been a major area of continuing statistical research-both theoretically and practically. A possible cause of such sustained interest is that many statistical procedures have been derived based on particular distributional assumptions-especially that of normality. Although in many cases the techniques are more robust than the assumptions underlying them, still a knowledge that the underlying assumption is incorrect may temper the use and application of the methods. Moreover, the study of a body of data with the stimulus of a distributional test may encourage consideration of, for example, normalizing transformations and the use of alternate methods such as distribution-free techniques, as well as detection of gross peculiarities such as outliers or errors. The test procedure developed in this paper is defined and some of its analytical properties described in ? 2. Operational information and tables useful in employing the test are detailed in ? 3 (which may be read independently of the rest of the paper). Some examples are given in ? 4. Section 5 consists of an extract from an empirical sampling study of the comparison of the effectiveness of various alternative tests. Discussion and concluding remarks are given in ?6. 2. THE W TEST FOR NORMALITY (COMPLETE SAMPLES) 2 1. Motivation and early work This study was initiated, in part, in an attempt to summarize formally certain indications of probability plots. In particular, could one condense departures from statistical linearity of probability plots into one or a few 'degrees of freedom' in the manner of the application of analysis of variance in regression analysis? In a probability plot, one can consider the regression of the ordered observations on the expected values of the order statistics from a standardized version of the hypothesized distribution-the plot tending to be linear if the hypothesis is true. Hence a possible method of testing the distributional assumptionis by means of an analysis of variance type procedure. Using generalized least squares (the ordered variates are correlated) linear and higher-order

16,906 citations


Network Information
Related Topics (5)
Regression analysis
31K papers, 1.7M citations
90% related
Statistical hypothesis testing
19.5K papers, 1M citations
90% related
Linear model
19K papers, 1M citations
88% related
Linear regression
21.3K papers, 1.2M citations
85% related
Estimator
97.3K papers, 2.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023301
2022679
2021337
2020386
2019361
2018335