scispace - formally typeset
Search or ask a question
Topic

Grain boundary diffusion coefficient

About: Grain boundary diffusion coefficient is a research topic. Over the lifetime, 8465 publications have been published within this topic receiving 234779 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the relation of P to conveniently available properties of dilute solutions is generalized to permit estimation of diffusion coefficients for engineering purposes for convective transport due to volume changes on mixing is negligible and other possible modes of mass transfer are not operative.
Abstract: Equation i 1) is strictly applicable in ideal dilute solutions in which convective transport due to volume changes on mixing is negligible, and in which other possible modes of mass transfer are not operative. This paper represents an attempito generalize the relation of P to conveniently available properties of dilute solutions so as to permit estimation of diffusion coefficients for engineering purposes.

4,166 citations

Journal ArticleDOI
TL;DR: In this article, the authors report measurements of the oxide scale thickness and oxide grain size as a function of time during the oxidation of high-purity nickel in the temperature range 500-800°C.
Abstract: Below 1000°C the oxidation of nickel cannot be controlled by the diffusion of ions through the bulk crystal lattice of the pure oxide, because the measured oxidation rates are several orders of magnitude faster than would be predicted on this basis. Short-circuit diffusion through oxide grain boundaries or dislocations has usually been held responsible, but there has hitherto been no proper quantitative confirmation of this mechanism. We report measurements of the oxide scale thickness and oxide grain size as a function of time during the oxidation of high-purity nickel in the temperature range 500–800°C. All the oxidation experiments were carried out in pure oxygen at a pressure of one atmosphere. The measured parabolic oxidation rate constants have been compared with those calculated from grain boundary diffusion data obtained in our previous work, using a grain boundary diffusion model for the oxidation process. The quantitative agreement between measured and calculated oxidation rates shows c...

2,579 citations

Journal ArticleDOI
TL;DR: In this article, the authors discussed the mechanism of creep in polycrystalline alumina based on the differences between the lattice and boundary diffusion models and showed that the boundary diffusion model is more stable than lattice diffusion model, while the grain size dependence and the numerical constant are greater.
Abstract: The creep rate (ė) predicted by the boundary diffusion (Db) model is ė≃150σDbWΩ/(GS)3kT, where σ is the stress, W is the boundary width, (GS) is the average grain size, and Ω is vacancy volume. The stress dependence is the same as the lattice diffusion model, given by C. Herring, while the grain size dependence and the numerical constant are greater for boundary diffusion. Discussion of the mechanism of creep in polycrystalline alumina is based on the differences between the lattice and boundary diffusion models.

2,050 citations

Journal ArticleDOI

1,963 citations

Journal ArticleDOI
A. F. Mayadas1, M. Shatzkes1
TL;DR: In this paper, the total resistivity of a thin metal film is calculated from a model in which three types of electron scattering mechanisms are simultaneously operative: an isotropic background scattering (due to the combined effects of phonons and point defects), scattering due to a distribution of planar potentials (grain boundaries), and scattering by the external surfaces.
Abstract: In this paper, the total resistivity of a thin metal film is calculated from a model in which three types of electron scattering mechanisms are simultaneously operative: an isotropic background scattering (due to the combined effects of phonons and point defects), scattering due to a distribution of planar potentials (grain boundaries), and scattering due to the external surfaces. The intrinsic or bulk resistivity is obtained by solving a Boltzmann equation in which both grain-boundary and background scattering are accounted for. The total resistivity is obtained by imposing boundary conditions due to the external surfaces (as in the Fuchs theory) on this Boltzmann equation. Interpretation of published data on grain-boundary scattering in bulk materials in terms of the calculated intrinsic resistivity, and of thin-film data in terms of the calculated total resistivity suggests that (i) the grain-boundary reflection coefficient in Al is \ensuremath{\approx} 0.15, while it is somewhat higher in Cu; (ii) the observed thickness dependence of the resistivity in thin films is due to grain-boundary scattering as well as to the Fuchs size effect; and (iii) the common observation that single-crystal films possess lower resistivities than polycrystalline films may be accounted for by grain-boundary effects rather than by differences in the nature of surface scattering.

1,842 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
92% related
Alloy
171.8K papers, 1.7M citations
90% related
Amorphous solid
117K papers, 2.2M citations
90% related
Thin film
275.5K papers, 4.5M citations
88% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202390
2022155
2021120
2020120
2019120
2018141