scispace - formally typeset


Grain boundary strengthening

About: Grain boundary strengthening is a(n) research topic. Over the lifetime, 8585 publication(s) have been published within this topic receiving 286232 citation(s).

More filters
Journal ArticleDOI
Abstract: The mechanical properties of nanocrystalline materials are reviewed, with emphasis on their constitutive response and on the fundamental physical mechanisms. In a brief introduction, the most important synthesis methods are presented. A number of aspects of mechanical behavior are discussed, including the deviation from the Hall–Petch slope and possible negative slope, the effect of porosity, the difference between tensile and compressive strength, the limited ductility, the tendency for shear localization, the fatigue and creep responses. The strain-rate sensitivity of FCC metals is increased due to the decrease in activation volume in the nanocrystalline regime; for BCC metals this trend is not observed, since the activation volume is already low in the conventional polycrystalline regime. In fatigue, it seems that the S–N curves show improvement due to the increase in strength, whereas the da/dN curve shows increased growth velocity (possibly due to the smoother fracture requiring less energy to propagate). The creep results are conflicting: while some results indicate a decreased creep resistance consistent with the small grain size, other experimental results show that the creep resistance is not negatively affected. Several mechanisms that quantitatively predict the strength of nanocrystalline metals in terms of basic defects (dislocations, stacking faults, etc.) are discussed: break-up of dislocation pile-ups, core-and-mantle, grain-boundary sliding, grain-boundary dislocation emission and annihilation, grain coalescence, and gradient approach. Although this classification is broad, it incorporates the major mechanisms proposed to this date. The increased tendency for twinning, a direct consequence of the increased separation between partial dislocations, is discussed. The fracture of nanocrystalline metals consists of a mixture of ductile dimples and shear regions; the dimple size, while much smaller than that of conventional polycrystalline metals, is several times larger than the grain size. The shear regions are a direct consequence of the increased tendency of the nanocrystalline metals to undergo shear localization. The major computational approaches to the modeling of the mechanical processes in nanocrystalline metals are reviewed with emphasis on molecular dynamics simulations, which are revealing the emission of partial dislocations at grain boundaries and their annihilation after crossing them.

3,425 citations

Journal ArticleDOI
31 Oct 2002-Nature
TL;DR: A thermomechanical treatment of Cu is described that results in a bimodal grain size distribution, with micrometre-sized grains embedded inside a matrix of nanocrystalline and ultrafine (<300 nm) grains, which impart high strength, as expected from an extrapolation of the Hall–Petch relationship.
Abstract: Nanocrystalline metals--with grain sizes of less than 100 nm--have strengths exceeding those of coarse-grained and even alloyed metals, and are thus expected to have many applications. For example, pure nanocrystalline Cu (refs 1-7) has a yield strength in excess of 400 MPa, which is six times higher than that of coarse-grained Cu. But nanocrystalline materials often exhibit low tensile ductility at room temperature, which limits their practical utility. The elongation to failure is typically less than a few per cent; the regime of uniform deformation is even smaller. Here we describe a thermomechanical treatment of Cu that results in a bimodal grain size distribution, with micrometre-sized grains embedded inside a matrix of nanocrystalline and ultrafine (<300 nm) grains. The matrix grains impart high strength, as expected from an extrapolation of the Hall-Petch relationship. Meanwhile, the inhomogeneous microstructure induces strain hardening mechanisms that stabilize the tensile deformation, leading to a high tensile ductility--65% elongation to failure, and 30% uniform elongation. We expect that these results will have implications in the development of tough nanostructured metals for forming operations and high-performance structural applications including microelectromechanical and biomedical systems.

2,216 citations

Journal ArticleDOI

1,946 citations

Journal ArticleDOI
Abstract: A growth equation for individual grains in single-phase materials is suggested. It is used to calculate a rate equation for normal grain growth and the size distribution in the material. It predicts a maximum size of twice the average size. The theory is modified to take into account the effect of second-phase particles. In an alternative treatment the array of grains is described in terms of a kind of defects introduced into a perfect array. The defects move through the array during grain growth. The rate of grain growth is calculated from the number of defects and their mobility. The defect concentration is predicted by comparing the two treatments. The defect-model predicts two grain size limits due to second-phase particles. Normal grain growth takes place below the lower limit. Abnormal grain growth can take place between the two limits if the material contains at least one very large grain. No grain growth can take place above the higher limit. Several possible mechanisms for the development of abnormal grain growth are examined. An explanation is offered for the observation that most of the well-known cases occur as the second-phase is dissolving.

1,714 citations

Journal ArticleDOI
20 Jan 2011-Nature
TL;DR: This work determines the location and identity of every atom at a grain boundary and finds that different grains stitch together predominantly through pentagon–heptagon pairs, and reveals an unexpectedly small and intricate patchwork of grains connected by tilt boundaries.
Abstract: The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.

1,684 citations

Network Information
Related Topics (5)
Grain boundary

70.1K papers, 1.5M citations

95% related

148.6K papers, 2.2M citations

91% related

171.8K papers, 1.7M citations

90% related

63.8K papers, 1.6M citations

84% related
Amorphous solid

117K papers, 2.2M citations

82% related
No. of papers in the topic in previous years