Topic

# Granular material

About: Granular material is a(n) research topic. Over the lifetime, 13126 publication(s) have been published within this topic receiving 274632 citation(s). The topic is also known as: granules & granulated.

##### Papers

More filters

••

Abstract: The flow of an idealized granular material consisting of uniform smooth, but nelastic, spherical particles is studied using statistical methods analogous to those used in the kinetic theory of gases. Two theories are developed: one for the Couette flow of particles having arbitrary coefficients of restitution (inelastic particles) and a second for the general flow of particles with coefficients of restitution near 1 (slightly inelastic particles). The study of inelastic particles in Couette flow follows the method of Savage & Jeffrey (1981) and uses an ad hoc distribution function to describe the collisions between particles. The results of this first analysis are compared with other theories of granular flow, with the Chapman-Enskog dense-gas theory, and with experiments. The theory agrees moderately well with experimental data and it is found that the asymptotic analysis of Jenkins & Savage (1983), which was developed for slightly inelastic particles, surprisingly gives results similar to the first theory even for highly inelastic particles. Therefore the ‘nearly elastic’ approximation is pursued as a second theory using an approach that is closer to the established methods of Chapman-Enskog gas theory. The new approach which determines the collisional distribution functions by a rational approximation scheme, is applicable to general flowfields, not just simple shear. It incorporates kinetic as well as collisional contributions to the constitutive equations for stress and energy flux and is thus appropriate for dilute as well as dense concentrations of solids. When the collisional contributions are dominant, it predicts stresses similar to the first analysis for the simple shear case.

2,361 citations

••

Abstract: Recent advances in theory and experimen- tation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a com- prehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoret- ical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining stat- ic; both can deform in a slow, tranquil mode character- ized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompress- ible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (mea- sured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibra- tional energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ;10 m 3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris be- hind surge fronts is nearly liquefied by high pore pres- sure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic mod- els of debris flows therefore require equations that sim- ulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristi- cally originate as nearly rigid sediment masses, trans- form at least partly to liquefied flows, and then trans- form again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behav- iors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical so- lutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

2,137 citations

••

Abstract: Granular materials are ubiquitous in the world around us. They have properties that are different from those commonly associated with either solids, liquids, or gases. In this review the authors select some of the special properties of granular materials and describe recent research developments.[S0034-6861(96)00204-8]

2,073 citations

••

TL;DR: A quantitative comparison between data coming from different experiments in the same geometry identifies the robust features in each case and a transverse analysis of the data across the different configurations allows to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations.

Abstract: The behaviour of dense assemblies of dry grains submitted to continuous shear deformation has been the subject of many experiments and discrete particle simulations. This paper is a collective work carried out among the French research group Groupement de Recherche Milieux Divises (GDR MiDi). It proceeds from the collection of results on steady uniform granular flows obtained by different groups in six different geometries both in experiments and numerical works. The goal is to achieve a coherent presentation of the relevant quantities to be measured i.e. flowing thresholds, kinematic profiles, effective friction, etc. First, a quantitative comparison between data coming from different experiments in the same geometry identifies the robust features in each case. Second, a transverse analysis of the data across the different configurations, allows us to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations. The present work, more than a simple juxtaposition of results, demonstrates the richness of granular flows and underlines the open problem of defining a single rheology.

1,432 citations

••

Abstract: Within a granular material stress is transmitted by forces exerted at points of mutual contact between particles. When the particles are close together and deformation of the assembly is slow, contacts are sustained for long times, and these forces consist of normal reactions and the associated tangential forces due to friction. When the particles are widely spaced and deformation is rapid, on the other hand, contacts are brief and may be regarded as collisions, during which momentum is transferred. While constitutive relations are available which model both these situations, in many cases the average contact times lie between the two extremes. The purpose of the present work is to propose constitutive relations and boundary conditions for this intermediate case and to solve the corresponding equations of motion for plane shear of a cohesionless granular material between infinite horizontal plates. It is shown that, in general, not all the material between the plates participates in shearing, and the solutions for the shearing material are coupled to a yield condition for the non-shearing material to give a complete solution of the problem.

1,432 citations