scispace - formally typeset
Search or ask a question
Topic

Granulite

About: Granulite is a research topic. Over the lifetime, 6763 publications have been published within this topic receiving 268925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The Grenville orogenic cycle, between ∼ 1190 and 980 Ma, involved accretion of magmatic arcs and/or continental terranes to the Laurentian craton as mentioned in this paper.
Abstract: The Grenville orogenic cycle, between ∼ 1190 and 980 Ma, involved accretion of magmatic arcs and/or continental terranes to the Laurentian craton. A transect across the western Central Gneiss Belt, Georgian Bay, Ontario, which crosses the boundary between parautochthonous and allochthonous units at an inferred orogenic depth of 20–30 km, offers some insights on the thermal and mechanical behavior of the lower crust during the development of the Grenville orogen. Prior to Grenvillian metamorphism, this part of Laurentia consisted largely of Meso-proterozoic (∼ 1450 Ma) granitoid orthogneisses, granulites, and subordinate mafic and supracrustal rocks. Grenvillian convergence along the transect began with transport of the previously deformed and metamorphosed (∼ 1160 Ma) Parry Sound domain over the craton sometime between 1120 Ma and 1080 Ma. This stage of transport was followed by out-of-sequence thrusting and further convergence along successively deeper, foreland-propagating ductile thrust zones. A major episode of extension at ∼ 1020 Ma resulted in southeast directed transport of allochthonous rocks along the midcrustal Shawanaga shear zone. The final stage of convergence involved deformation and metamorphism in the Grenville Front Tectonic Zone at ∼ 1000–980 Ma. Peak metamorphism along most of the transect at 1065–1045 Ma followed initial transport of allochthonous rocks over the craton by 15–35 m.y. Regional cooling, which postdated peak metamorphism by >70 m.y., was probably delayed by the combined effects of late-stage extension and convergence. Transport of allochthons at least 100 km over the craton was accomplished along a weak, migmatitic decollement; further propagation of the orogen into the craton followed partial melting and weakening of parautochthonous rocks below this decollement. Extensional deformation was associated with distributed ductile flow, the formation of regional transverse folds with axes parallel to the stretching direction, and reactivation of the allochthon-parautochthon thrust boundary as an extensional decollement. The extensional lower crustal flow was likely the primary cause of the subhorizontal attitude of many structures and seismic reflectors in this part of the Central Gneiss Belt.

101 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the Ivrea zone (northern Italy, magma and migration of partial melt will internally Southern Alps) as an important exposure that demonstrates this stratify, chemically differentiate, and deplete the concausal relationship.
Abstract: Emplacement of mantle-derived magma (magmatic accretion) is the total thermal budget of the continental lower crust, often presumed or inferred to be an important cause of regional produce regional granulite facies metamorphism, and granulite facies metamorphism and crustal anatexis. The juxgenerate Yand heavy rare earth element (HREE)taposition of mafic cumulates and regionally distributed granulite depleted granitoids (Ellis, 1987). Accretion of mafic facies rocks has led some to consider the Ivrea zone (northern Italy, magma and migration of partial melt will internally Southern Alps) as an important exposure that demonstrates this stratify, chemically differentiate, and deplete the concausal relationship. However, regional PTt paths indicated by tinental lower crust in large ion lithophile elements metamorphic reaction textures and PT conditions inferred from (LILE). Magmatic accretion has been invoked to provide geothermobarometry indicate that the emplacement of mafic plutonic the heat and mass necessary for sustained magmatism in rocks (Mafic Complex) at the Ivrea zone occurred during detectonic settings such as Phanerozoic extensional terranes compression from ambient pressures at the regional thermal maximum. (Lister et al., 1986; Gans, 1987; Fountain, 1989; Mareschal Field and petrographic observations, supported by PT estimates, & Bergantz, 1990; Jarchow et al., 1993) and magmatic indicate that regional retrograde decompression and emplacement of arcs (Hamilton, 1981; Kay & Kay, 1981; Bohlen & the upper parts of the Mafic Complex probably accompanied Lindsley, 1987; Hildreth & Moorbath, 1988). extension during the Late Carboniferous–Early Permian. A spatially However, as few exposed sections of lower continental restricted decompression-melting event accompanied final emcrust show contiguous mafic intrusions and regionally placement, depleting supracrustal rocks enclosed by an >2–3 km distributed granulite facies rocks, estimates of the extent aureole overlying the upper Mafic Complex by 20–30% granite of anatexis and metamorphism accompanying magmatic component. The upper Mafic Complex provided the thermal energy accretion have relied on numerical and analog simto reset mineral assemblages and locally overprint the regional ulations. These models yield disparate results depending prograde metamorphic zonation. The limited extent of the contact on whether heat transfer within the mafic intrusion aureole suggests that magmatic accretion may not inexorably cause and surrounding country rocks is primarily convective regional metamorphism and crustal anatexis. (Campbell & Turner, 1987; Huppert & Sparks, 1988) or conductive (Marsh, 1989; Bergantz & Dawes, 1994; Barboza & Bergantz, 1996). A comparison with field evidence is required to discriminate between the model

101 citations

Journal ArticleDOI
TL;DR: Ion microprobe zircon ages, a Nd model age and RbSr whole-rock dates are reported from the high-grade gneiss terrain at Sabaloka on the River Nile north of Khartoum, formally considered to be part of the Archaean/early Proterozoic Nile craton.

101 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet-orthopyroxene gneis, and magnetite-quartz granulites from Tonagh Island.
Abstract: The ultrahigh-temperature (UHT) metamorphism of the Napier Complex is characterized by the presence of dry mineral assemblages, the stability of which requires anhydrous conditions. Typically, the presence of the index mineral orthopyroxene in more than one lithology indicates that H2O activities were substantially low. In this study, we investigate a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet–orthopyroxene gneiss, and magnetite–quartz gneiss from Tonagh Island. High Al contents in orthopyroxene from sapphirine granulite, the presence of an equilibrium sapphirine–quartz assemblage, mesoperthite in quartzo-feldspathic garnet gneiss, and an inverted pigeonite–augite assemblage in magnetite–quartz gneiss indicate that the peak temperature conditions were higher than 1,000 °C. Petrology, mineral phase equilibria, and pressure–temperature computations presented in this study indicate that the Tonagh Island granulites experienced maximum P–T conditions of up to 9 kbar and 1,100 °C, which are comparable with previous P–T estimates for Tonagh and East Tonagh Islands. The textures and mineral reactions preserved by these UHT rocks are consistent with an isobaric cooling (IBC) history probably following an counterclockwise P–T path. We document the occurrence of very high-density CO2-rich fluid inclusions in the UHT rocks from Tonagh Island and characterize their nature, composition, and density from systematic petrographic and microthermometric studies. Our study shows the common presence of carbonic fluid inclusions entrapped within sapphirine, quartz, garnet and orthopyroxene. Analysed fluid inclusions in sapphirine, and some in garnet and quartz, were trapped during mineral growth at UHT conditions as 'primary' inclusions. The melting temperatures of fluids in most cases lie in the range of –56.3 to –57.2 °C, close to the triple point for pure CO2 (–56.6 °C). The only exceptions are fluid inclusions in magnetite–quartz gneiss, which show slight depression in their melting temperatures (–56.7 to –57.8 °C) suggesting traces of additional fluid species such as N2 in the dominantly CO2-rich fluid. Homogenization of pure CO2 inclusions in the quartzo-feldspathic garnet gneiss, sapphirine granulite, and garnet–orthopyroxene gneiss occurs into the liquid phase at temperatures in the range of –34.9 to +4.2 °C. This translates into very high CO2 densities in the range of 0.95–1.07 g/cm3. In the garnet–orthopyroxene gneiss, the composition and density of inclusions in the different minerals show systematic variation, with highest homogenization temperatures (lowest density) yielded by inclusions in garnet, as against inclusions with lowest homogenization (high density) in quartz. This could be a reflection of continued recrystallization of quartz with entrapment of late fluids along the IBC path. Very high-density CO2 inclusions in sapphirine associated with quartz in the Tonagh Island rocks provide potential evidence for the involvement of CO2-rich fluids during extreme crustal temperatures associated with UHT metamorphism. The estimated CO2 isochores for sapphirine granulite intersect the counterclockwise P–T trajectory of Tonagh Island rocks at around 6–9 kbar at 1,100 °C, which corresponds to the peak metamorphic conditions of this terrane derived from mineral phase equilibria, and the stability field of sapphirine + quartz. Therefore, we infer that CO2 was the dominant fluid species present during the peak metamorphism in Tonagh Island, and interpret that the fluid inclusions preserve traces of the synmetamorphic fluid from the UHT event. The stability of anhydrous minerals, such as orthopyroxene, in the study area might have been achieved by the lowering of H2O activity through the influx of CO2 at peak metamorphic conditions (>1,100 °C). Our microthermometric data support a counterclockwise P–T path for the Napier Complex.

101 citations

Journal ArticleDOI
TL;DR: The widespread khondalite series of south-east Inner Mongolia consists largely of biotite, hornblende, sodic plagioclase and quartz in garnet or orthopyroxene.
Abstract: The widespread khondalite series of south-east Inner Mongolia consists largely of biotite–sillimanite–garnet gneiss and quartzo-feldspathic gneiss with some marble and mafic granulite layers. It has experienced two metamorphic events at c. 2500 and 1900–2000 Ma. A pre-peak stage of the first metamorphism at T= 600–700°C and P > 6–7 kbar is recognized by the relict amphibolite facies assemblage Ky–Grt–Bt–Pl–Qtz and ‘protected’inclusions of biotite, hornblende, sodic plagioclase and quartz in garnet or orthopyroxene. The peak stage, with T=c. 800 ± 50°C and P 8–10 kbar, is characterized by the widespread granulite facies assemblages Sil–Grt–Bt–Kfs–Pl–Qtz in gneiss and Opx–Cpx–Pl ± Hbl ± Grt in granulite. The P–T–t path suggests that the supracrustal sequence was buried in the lower crust by tectonic thickening during D1–D2. The beginning of the second metamorphism is characterized by further temperature rise to 700°C or more at lower pressure. This stage is manifested by the appearance of cordierite after garnet, fibrolite (Sil2) after biotite in gneiss and transformation of Hbl1 into Opx2 and Cpx2 in granulite. Coronas of symplectitic Opx2 + Pl2 surrounding Grt1 and Cpx1 in mafic granulite are interpreted as products of near-isothermal decompression. The P–T–t path may be related tectonically to waning extension of the crust by the end of the early Proterozoic.

101 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
97% related
Zircon
23.7K papers, 786.6K citations
95% related
Continental crust
11.1K papers, 677.5K citations
94% related
Basalt
18.6K papers, 805.1K citations
93% related
Subduction
22.4K papers, 1.1M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023126
2022301
2021177
2020203
2019148
2018142