scispace - formally typeset
Search or ask a question
Topic

Granulite

About: Granulite is a research topic. Over the lifetime, 6763 publications have been published within this topic receiving 268925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The Mantiqueira and Juiz de Fora complexes were part of a Paleoproterozoic orogenic system disrupted and deeply reworked during the evolution of the AracuaCongo Orogen as mentioned in this paper.

174 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the early Paleozoic polyphase tectonothermal events related to the subduction of the proto-Tethyan ocean and subsequent collisional orogeny produced two dominant metamorphic belts: the North Altun (NAT) and North Qilian (NQL) HP/LT metamorphics.

174 citations

Journal ArticleDOI
TL;DR: In this paper, secondary-ion mass spectrometry (SIMS) and trace element data are reported for zircon to address the controversial geochronology of eclogite-facies metamorphism in the Lindas nappe, Bergen Arcs, Caledonides of W Norway.
Abstract: Secondary-ion mass spectrometry (SIMS) U–Pb and trace element data are reported for zircon to address the controversial geochronology of eclogite-facies metamorphism in the Lindas nappe, Bergen Arcs, Caledonides of W Norway. Caledonian eclogite-facies overprint in the nappe was controlled by fracturing and introduction of fluid in the Proterozoic—Sveconorwegian—granulite-facies meta-anorthosite-norite protolith. Zircon grains in one massive eclogite display a core–rim structure. Sveconorwegian cores have trace element signatures identical with those of zircon in the granulite protolith, i.e. 0.31≤Th/U≤0.89, heavy rare earth element (HREE) enrichment, and negative Eu anomaly. Weakly-zoned to euhedral oscillatory-zoned Caledonian rims are characterized by Th/U≤0.13, low LREE content (minimum normalized abundance for Pr or Nd), variable enrichment in HREE, and no Eu anomaly. A decrease of REE towards the outermost rim, especially HREE, is documented. This signature reflects co-precipitation of zircon with garnet and clinozoisite in a feldspar-absent assemblage, and consequently links zircon to the eclogite-facies overprint. The rims provide a mean 206Pb/238U crystallization age of 423±4 Ma. This age reflects eclogite-forming reactions and fluid–rock interaction. This age indicates that eclogite-facies overprint in the Lindas nappe took place at the onset of the Scandian (Silurian) collision between Laurentia and Baltica.

173 citations

Journal ArticleDOI
TL;DR: The early Proterozoic geologic evolution of the eastern Mojave Desert region, as defined by characteristics of its supracrustal rocks, granitoids, metamorphism, structural history, and Pb and Nd isotopic signature, contrasts sharply with other Protean provinces of the southwestern United States.
Abstract: The Early Proterozoic geologic evolution of the eastern Mojave Desert region, as defined by characteristics of its supracrustal rocks, granitoids, metamorphism, structural history, and Pb and Nd isotopic signature, contrasts sharply with other Proterozoic provinces of the southwestern United States. The oldest supracrustal rocks of the Mojave Desert region contain zircons over 2.0 Ga, corroborating Nd isotopic evidence for a much older crust here than elsewhere in the southwestern United States. Granitoids widely emplaced within these supracrustal rocks range from 1.76 to 1.64 Ga. The earlier plutons and surrounding supracrustal rocks were metamorphosed to granulite and high amphibolite facies throughout the province at about 1705 Ma in a migmatite-producing event that we term (informally) the Ivanpah orogeny. Subsequent granitoids, emplaced from 1.69 to 1.67 Ga, were voluminous along a north trending belt in the middle of the Mojave province. Younger plutons were emplaced at about 1.66 Ga in several places and at about 1.64 Ga along the extreme southern part of the province. Commonalities between the Proterozoic evolutions of the Mojave and Arizona crustal provinces do not conclusively establish the time that the provinces were juxtaposed; the data only suggest that the juxtaposition occurred between about 1.76 and 1.64 Ga.

173 citations

Journal ArticleDOI
TL;DR: The results of a geochemical study of the Jijal and Sarangar complexes, which constitute the lower crust of the Mesozoic Kohistan paleo-island arc (Northern Pakistan), were reported in this article.
Abstract: We report the results of a geochemical study of the Jijal and Sarangar complexes, which constitute the lower crust of the Mesozoic Kohistan paleo-island arc (Northern Pakistan). The Jijal complex is composed of basal peridotites topped by a gabbroic section made up of mafic garnet granulite with minor lenses of garnet hornblendite and granite, grading up-section to hornblende gabbronorite. The Sarangar complex is composed of metagabbro. The Sarangar gabbro and Jijal hornblende gabbronorite have melt-like, light rare earth element (LREE)-enriched REE patterns similar to those of island arc basalts. Together with the Jijal garnet granulite, they define negative covariations of LaN, YbN and (La/Sm)N with Eu* [Eu* 1⁄4 2 · EuN/(SmN þ GdN), where N indicates chondrite normalized], and positive covariations of (Yb/Gd)N with Eu*. REE modeling indicates that these covariations cannot be accounted for by high-pressure crystal fractionation of hydrous primitive or derivative andesites. They are consistent with formation of the garnet granulites as plagioclase–garnet assemblages with variable trapped melt fractions via either high-pressure crystallization of primitive island arc basalts or dehydration-melting of hornblende gabbronorite, provided that the amount of segregated or restitic garnet was low (<5 wt %). Field, petrographic, geochemical and experimental evidence is more consistent with formation of the Jijal garnet granulite by dehydration-melting of Jijal hornblende gabbronorite. Similarly, the Jijal garnet-bearing hornblendite lenses were probably generated by coeval dehydration-melting of hornblendites. Melting models and geochronological data point to intrusive leucogranites in the overlying metaplutonic complex as the melts generated by dehydration-melting of the plutonic protoliths of the Jijal garnetbearing restites. Consistent with the metamorphic evolution of the Kohistan lower arc crust, dehydration-melting occurred at the mature JOURNAL OF PETROLOGY VOLUME 47 NUMBER 10 PAGES 1873–1914 2006 doi:10.1093/petrology/egl030

172 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
97% related
Zircon
23.7K papers, 786.6K citations
95% related
Continental crust
11.1K papers, 677.5K citations
94% related
Basalt
18.6K papers, 805.1K citations
93% related
Subduction
22.4K papers, 1.1M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023126
2022301
2021177
2020203
2019148
2018142