scispace - formally typeset
Search or ask a question
Topic

Granulite

About: Granulite is a research topic. Over the lifetime, 6763 publications have been published within this topic receiving 268925 citations.


Papers
More filters
Journal ArticleDOI
06 Nov 1980-Nature
TL;DR: The hot-spot and plate-tectonic models of Precambrian crustal evolution lead to different schemes for CO2 delivery to continental roots as mentioned in this paper, and new tectonic concepts may be needed to explain carbonic metamorphism, minor-element depletions, and local phenomena of arrested development of charnockite in terrains.
Abstract: Stabilization of early crust against melting by high radioactivity and against resorption into the mantle by fast convective overturn requires that water and heat producers were flushed upwards within 50 Myr of accretion. Creation of a refractory base of granulite by metamorphism associated with CO2 vapour explains CO2-rich fluid inclusions in ancient high-grade rocks, minor-element depletions and local phenomena of arrested development of charnockite in Precambrian terrains. The hot-spot and plate-tectonic models of Precambrian crustal evolution lead to different schemes for CO2 delivery to continental roots. New tectonic concepts may be needed to explain carbonic metamorphism and other features of early crustal evolution.

512 citations

Journal ArticleDOI
TL;DR: In this article, a series of experiments, between 100 and 2000 MPa, on the fluid-absent melting of a quartz-rich aluminous metagreywacke composed of 32 wt% plagioclase (Pl) (An22), 25 wt % biotite (Bt) (XMg45), and 41 wt percent quartz (Qtz), were carried out using a powder of minerals (≤5μm) and a glass of the same composition.
Abstract: Island arcs, active and passive margins are the best tectonic settings to generate fertile reservoirs likely to be involved in subsequent granitoid genesis. In such environments, greywackes are abundant crustal rock types and thus are good candidates to generate large quantities of granitoid magmas. We performed a series of experiments, between 100 and 2000 MPa, on the fluid-absent melting of a quartz-rich aluminous metagreywacke composed of 32 wt% plagioclase (Pl) (An22), 25 wt% biotite (Bt) (X Mg45), and 41 wt% quartz (Qtz). Eighty experiments, averaging 13 days each, were carried out using a powder of minerals (≤5μm) and a glass of the same composition. The multivariant field of the complex reaction Bt+Pl+Qtz⇔Grt/Crd/Spl+ Opx+Kfs+melt limited by the Opx-in and Bt-out curves, is located between 810–860°C at 100 MPa, 800–850°C at 200 MPa, 810–860°C at 300 MPa, 820–880°C at 500 MPa, 860–930°C at 800 MPa, 890–990°C at 1000 MPa, and at a temperature lower than 1000°C at 1500 and 1700 MPa. The melting of biotite+plagioclase+ quartz produced melt+orthopyroxene (Opx) +cordierite (Crd) or spinel (Spl) at 100, 200 and 300 MPa, and melt+orthopyroxene+garnet (Grt) from 500 to 1700 MPa (+Qtz, Pl, FeTi Oxide at all pressures). K-feldspar (Kfs) was found as a product of the reaction in some cases and we observed that the residual plagioclase was always strongly enriched in orthoclase component. The P-T surface corresponding to the multivariant field of this reaction is about 50 to 100°C wide. At temperatures below the appearance of orthopyroxene, biotite is progressively replaced by garnet with increasing P. At 850°C, we observed that (1) the modal proportion of garnet increases markedly with P; (2) the grossular content of the garnet increases regularly from about 4 mol% at 500 MPa to 15 mol% at 2000 MPa. These changes can be ascribed to the reaction Bt+Pl+Qtz ⇔ Grt+Kfs+melt with biotite +plagioclase+quartz on the low-P side of the reaction. As a result, at 200 MPa, we observed the progressive disappearance of biotite without production of orthopyroxene. These experiments emphasize the importance of this reaction for the understanding of partial melting processes and evolution of the lower continental crust. Ca-poor Al-metagreywackes represent fertile rocks at commonly attainable temperatures (i.e. 800–900°C), below 700 MPa. There, 30 to 60 vol.% of melt can be produced. Above this pressure, temperatures above 900°C are required, making the production of granitoid magmas more difficult. Thin layers of gneisses composed of rothopyroxene, garnet, plagioclase, and quartz (±biotite), interbedded within sillimanite-bearing paragneisses, are quite common in granulite terrains. They may result from partial melting of metagreywackes and correspond to recrystallized mixtures of crystals (+trapped melt) left behind after removal of a major proportion of melt. Available experimental constraints indicate that extensive melting of pelites takes place at a significantly lower temperature (850°C±20) than in Al-metagreywackes (950°C±30), at 1000 MPa. The common observation that biotite is no longer stable in aluminous paragneisses while it still coexists commonly with orthopyroxene, garnet, plagioclase and quartz, provides rather tight temperature constraints for granulitic metamorphism.

502 citations

Journal ArticleDOI
TL;DR: The products of metamorphic fluid flow are preserved in zones within the marbles and metamorphosed semipelites of the Upper Calcsilicate Unit in the granulite portion of the Late Palaeoproterozoic Reynolds Range Group, northern Arunta Block, central Australia.
Abstract: The products of metamorphic fluid flow are preserved in zones within the marbles and metamorphosed semipelites of the Upper Calcsilicate Unit in the granulite portion of the Late Palaeoproterozoic Reynolds Range Group, northern Arunta Block, central Australia. The zones of retrogression, characterized by minerals such as wollastonite, grossular and clinohumite, local resetting of oxygen isotopic compositions and local major element metasomatism, were channelways for water-rich fluids derived from granulite facies metapelites. U–Th–Pb isotopic ages measured by the SHRIMP ion microprobe on zircon and monazite from a granulite facies semipelite, an early semiconcordant aluminous quartz-rich fluid-flow segregation and a late discordant quartz-rich segregation record some of the extended thermal history of the area. Zircon cores from the semipelite show its likely protolith to be an igneous rock 1812 ± 11 Ma old, itself derived from a source containing zircon as old as 2.2 Ga. Low-Th/U overgrowths on the zircon grew during granulite facies metamorphism at 1594 ± 6 Ma. Monazite cooled to its blocking temperature at 1576 ± 8 Ma. Zircon cores from the semiconcordant segregation are dominantly >2.3 Ga old, indicating that the source of the fluids was not the particular metamorphosed semipelite studied. Two generations of low-Th/U overgrowths on the zircon give indistinguishable ages for the older and younger of 1589 ± 8 and 1582 ± 8 Ma, respectively. The monazite age is the same, 1576 ± 12 Ma. Zircon from the late discordant segregation gave 1568 ± 4 Ma. Fluid flow occurred for at least 18 ± 3 (σ) Ma and ended 26 ± 3 (σ) Ma after the peak of metamorphism, suggesting a very slow cooling rate of ∼3°C Ma–1. The last regional high-grade metamorphism in the Reynolds Range occurred at ∼1.6 Ga, not ∼1.78 Ga as previously thought. The high-grade event at ∼1.78 Ga is a separate event that affected only the basement to the Reynolds Range Group.

495 citations

Journal ArticleDOI
TL;DR: In this paper, the trace element partitioning between zircon and garnet was determined experimentally at 20kbar and 800-1000°C for P,Y,rareearthelements(REE),Zr,Hf,Th andU.

491 citations

Journal ArticleDOI
TL;DR: The exhumation of high-pressure metamorphic rocks requires either the removal of the overburden that caused the high pressures, or the transport of the metamorphics rocks through the over-burden Exhumation cannot be achieved simply by thrusting or strike-slip faulting as discussed by the authors.
Abstract: The exhumation of high-pressure metamorphic rocks requires either the removal of the overburden that caused the high pressures, or the transport of the metamorphic rocks through the overburden Exhumation cannot be achieved simply by thrusting or strike-slip faulting It may be caused by erosion of shortened and thickened crust, but this is unlikely to be the only mechanism for exhuming rocks from depths greater than about 20 km One or more of the following additional mechanisms may be involved 1 Corner flow of low-viscosity material trapped between the upper and lower plates in a subduction zone can cause upward flow of deeply buried rock, and may explain some occurrences of high-pressure tectonic blocks in melange This process does not, however, appear to be adequate to explain the exhumation of regional high-pressure terrains 2 Buoyancy forces acting directly on metamorphic rock bodies may cause them to rise relative to more dense surroundings This is likely to be the most important mechanism of exhumation of crustal rocks subducted into the mantle, but cannot explain the emplacement of coherent tracts of high-density metamorphic rock into shallow crustal levels Some high-pressure blocks emplaced at shallow levels in accretionary terrains may have been entrained in diapiric intrusions of low-density mud or serpentinite 3 Extension driven by the forces associated with contrasts in surface elevation may explain the exhumation and structural setting of many high-pressure terrains Extension may occur in the upper part of an accretionary wedge thickened by underplating; or it may affect the whole lithosphere in a region of intracontinental convergence, if surface elevation has been increased by the removal of a lithospheric root In the second case extension may be accompanied by magmatism and an evolution towards higher temperature during decompression of the metamorphic terrain

486 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
97% related
Zircon
23.7K papers, 786.6K citations
95% related
Continental crust
11.1K papers, 677.5K citations
94% related
Basalt
18.6K papers, 805.1K citations
93% related
Subduction
22.4K papers, 1.1M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023126
2022301
2021177
2020203
2019148
2018142