scispace - formally typeset
Search or ask a question
Topic

Granulite

About: Granulite is a research topic. Over the lifetime, 6763 publications have been published within this topic receiving 268925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an assemblage garnet + clinopyroxene in mafic granulite records peak temperatures of 1010-1060 ° C, consistent with minimum estimates of around 967 ° C and 22.3 kbar.
Abstract: The granulites of the Saxon Granulite Massif equilibrated at high pressure and ultrahigh temperature and were exhumed in large part under near-isothermal decompression. This raises the question of whether P-T-t data on the peak metamorphism may still be retrieved with confidence. Felsic and mafic granulites with geochronologically useful major and accessory phases have provided a basis to relate P-T estimates with isotopic ages presented in a companion paper. The assemblage garnet + clinopyroxene in mafic granulite records peak temperatures of 1010-1060 ° C, consistent with minimum estimates of around 967 ° C and 22.3 kbar obtained from the assemblage garnet + kyanite + ternary feldspar + quartz in felsic granulite. Multiple partial overprint of these assemblages reflects a clockwise P-T evolution. Garnet and kyanite in the felsic granulite were successively overgrown by plagioclase, spinel + plagioclase, sapphirine + plagioclase, and biotite + plagioclase. Most of this overprinting occurred within the stability field of sillimanite. Garnet + clinopyroxene in the mafic granulite were replaced by clinopyroxene + amphibole + plagioclase + magnetite. The high P-T conditions and the absence of thermal relaxation features in these granulites require a short-lived metamorphism with rapid exhumation. The ages of peak metamorphism (342 Ma) and shallow-level granitoid intrusions (333 Ma) constrain the time span for the exhumation of the Saxon granulites to about 9 Ma.

125 citations

Journal ArticleDOI
TL;DR: In this article, a model for regional metamorphism has been constructed to determine the thermal effects of reaction enthalpy and the amount of fluid generated by dehydration metamorphisms, and it is concluded that porosities are primarily dependent on the rate of metamorphic fluid production or consumption and the crustal permeability.
Abstract: Models for regional metamorphism have been constructed to determine the thermal effects of reaction enthalpy and the amount of fluid generated by dehydration metamorphism. The model continental crust contains an average of 2.9 wt % water and dehydrates by a series of reactions between temperatures of 300 and 750° C. Large scale metamorphism is induced by instantaneous collision belt thickening events which double the crustal thickness to 70 km. After a 20 Ma time lag, erosion due to isostatic rebound restores the crust to its original thickness in 100 Ma. At crustal depths greater than 10 km, where most metamorphism takes place, fluid pressure is unlikely to deviate significantly from lithostatic pressure. This implies that lower crustal porosity can only be maintained if rock pores are filled by fluid. Therefore, porosities are primarily dependent on the rate of metamorphic fluid production or consumption and the crustal permeability. In the models, permeability is taken as a function of porosity; this permits estimation of both fluid fluxes and porosities during metamorphism. Metamorphic activity, as measured by net reaction enthalpy, can be categorized as endothermic or exothermic depending on whether prograde dehydration or retrograde hydration reactions predominate. The endothermic stage begins almost immediately after thickening, peaks at about 20 Ma, and ends after 40 to 55 Ma. During this period the maximum and average heat consumption by reactions are on the order 11.2·10−14 W/cm3 and 5.9·10−14 W/ cm3, respectively. The maximum rates of prograde isograd advance decrease from 2.4·10−8 cm/s, for low grade reactions at 7 Ma, to 7·10−10 cm/s, for the highest grade reaction between 45 and 58 Ma. Endothermic cooling reduces the temperature variation in the metamorphic models by less than 7% (40 K); in comparison, the retrograde exothermic heating effect is negligible. Dehydration reactions are generally poor thermal buffers, but under certain conditions reactions may control temperature over depth and time intervals on the order of 1 km and 3 Ma. The model metamorphic events reduce the hydrate water content of the crust to values between 1.0 and 0.4 wt % and produce anhydrous lower crustal granulites up to 15 km in thickness. In the first 60 Ma of metamorphism, steady state fluid fluxes in the rocks overlying prograde reaction fronts are on the order of 5·10−11 g/cm2-s. These fluid fluxes can be accommodated by low porosities (<0.6%) and are thus essentially determined by the rate of devolitalization. The quantity of fluid which passes through the metamorphic column varies from 25000 g/cm2, within 10 km of the base of the crust, to amounts as large as 240000 g/cm2, in rocks initially at a depth of 30 km. Measured petrologic volumetric fluid-rock ratios generated by this fluid could be as high as 500 in a 1 m thick horizontal layer, but would decrease in inverse proportion of the thickness of the rock layer. Fluid advection causes local heating at rates of about 5.9·10−14 W/cm3 during prograde metamorphism and does not result in significant heating. The amount of silica which can be transported by the fluids is very sensitive to both the absolute temperature and the change in the geothermal gradient with depth. However, even under optimal conditions, the amount of silica precipitated by metamorphic fluids is small (<0.1 vol %) and inadequate to explain the quartz veining observed in nature. These results are based on equilibrium models for fluid and heat transport that exclude the possibility of convective fluid recirculation. Such a model is likely to apply at depths greater than 10 km; therefore, it is concluded that large scale heat and silica transport by fluids is not extensive in the lower crust, despite large time-integrated fluid fluxes.

125 citations

Journal ArticleDOI
TL;DR: The Neoproterozoic giant nappe system exposed south of the Sao Francisco craton underwent a minimum of 150 km of near-horizontal northeastward displacement as discussed by the authors.

125 citations

Journal ArticleDOI
TL;DR: In this paper, an integrated study of UHP age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the North Qinling (NQ) terrane was performed.
Abstract: The amalgamation of South (SCB) and North China Blocks (NCB) along the Qinling-Dabie orogenic belt involved several stages of high pressure (HP)-ultra high pressure (UHP) metamorphism. The new discovery of UHP metamorphic rocks in the North Qinling (NQ) terrane can provide valuable information on this process. However, no precise age for the UHP metamorphism in the NQ terrane has been documented yet, and thus hinders deciphering of the evolution of the whole Qinling-Dabie-Sulu orogenic belt. This article reports an integrated study of U–Pb age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the NQ terrane. The zircon cores in the eclogite are characterized by oscillatory zoning or weak zoning, high Th/U and 176Lu/177Hf ratios, pronounced Eu anomalies and steep heavy rare earth element (HREE) patterns. The zircon cores yield an age of 796 ± 13 Ma, which is taken as the protolith formation age of the eclogite, and implies that the NQ terrane may belong to the SCB before it collided with the NCB. The ɛHf(t) values vary from −11.3 to 3.2 and corresponding two-stage Hf model ages are 2402 to 1495 Ma, suggesting the protolith was derived from an enriched mantle. In contrast, the metamorphic zircon rims show no zoning or weak zoning, very low Th/U and 176Lu/177Hf ratios, insignificant Eu anomalies and flat HREE patterns. They contain inclusions of garnet, omphacite and phengite, suggesting that the metamorphic zircon formed under eclogite facies metamorphic conditions, and their weighted mean 206Pb/238U age of 485.9 ± 3.8 Ma was interpreted to date the timing of the eclogite facies metamorphism. Zircon in the quartz vein is characterized by perfect euhedral habit, some oscillatory zoning, low Th/U ratios and variable HREE contents. It yields a weighted mean U–Pb age of 480.5 ± 2.5 Ma, which registers the age of fluid activity during exhumation. Zircon in the schist is mostly detrital and U–Pb age peaks at c. 1950 to 1850, 1800 to 1600, 1560 to 1460 and 1400 to 1260 Ma with an oldest grain of 2517 Ma, also suggesting that the NQ terrane may have an affinity to the SCB. Accordingly, the amalgamation between the SCB and the NCB is a multistage process that spans c. 300 Myr, which includes: the formation of the Erlangping intra-oceanic arc zone onto the NCB before c. 490 Ma, the c. 485 Ma crustal subduction and UHP metamorphism of the NQ terrane, the c. 430 Ma arc-continent collision and granulite facies metamorphism, the 420 to 400 Ma extension and rifting in relation to the opening of the Palaeo-Tethyan ocean, the c. 310 Ma HP eclogite facies metamorphism of oceanic crust and associated continental basement, and the final 250 to 220 Ma continental subduction and HP–UHP metamorphism.

125 citations

Journal ArticleDOI
TL;DR: Rb-Sr multimineral isochron data for metamorphic veins allow to date separate increments of the mineral reaction history of polymetamorphic terranes as mentioned in this paper.
Abstract: Rb–Sr multimineral isochron data for metamorphic veins allow to date separate increments of the mineral reaction history of polymetamorphic terranes. Granulite facies rocks of the Lindas nappe, Bergen Arcs, Norway, were subducted and exhumed during the Caledonian orogeny. The rocks show petrographic evidence for two distinct events of local fluid infiltration and vein formation, along fractures and shear zones. The first occurred at eclogite facies (15–21 kbar, 650–750°C) and a later one at amphibolite facies conditions (8–10 kbar, 600°C). The presence of fluids enabled local metamorphic equilibration only near fluid pathways. In fluid-absent domains, preexisting assemblages were metastably preserved. This resulted in a heterogeneity of metamorphic signatures on meter to μm-scales. Well-preserved granulite facies rocks preserve their Proterozoic Rb–Sr mineral ages, as does the U–Pb system of zircon in most lithologies. Six Rb/Sr multimineral isochron ages for eclogite facies veins and their immediate wallrocks date the fluid-induced eclogitization at 429.9 ± 3.5 Ma (2σ, weighted average, MSWD = 0.39). An eclogite facies vein has yielded metamorphic zircon with concordant U–Pb ages of 429 ± 3 Ma, identical to the U–Pb age of 427.4 ± 0.9 Ma for zircon xenocrysts in an amphibolite facies vein. Seven Rb/Sr mineral isochron ages date amphibolite-facies fluid infiltration at 414.2 ± 2.8 Ma (MSWD = 1.5), an age value testifying to residence of the rocks in the deep orogenic crust at temperatures >600°C for nearly 15 Ma. The new data show that Rb–Sr mineral isochron ages effectively date fluid-induced (re)crystallization events rather than stages of cooling. The direct link between isotopic ages and distinct petrographic equilibrium assemblages aids to constrain the evolution of rocks in the P–T-reaction-time space, which is essential for understanding exhumation histories and the internal dynamics of orogens in general.

125 citations


Network Information
Related Topics (5)
Metamorphism
18.3K papers, 655.8K citations
97% related
Zircon
23.7K papers, 786.6K citations
95% related
Continental crust
11.1K papers, 677.5K citations
94% related
Basalt
18.6K papers, 805.1K citations
93% related
Subduction
22.4K papers, 1.1M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023126
2022301
2021177
2020203
2019148
2018142