scispace - formally typeset
Search or ask a question

Showing papers on "Graph (abstract data type) published in 2017"


Proceedings Article
04 Apr 2017
TL;DR: The Message Passing Neural Networks (MPNNs) as mentioned in this paper are a generalization of the message passing algorithm and aggregation procedure to compute a function of their entire input graph, and have been shown to achieve state-of-the-art results on an important molecular property prediction benchmark.
Abstract: Supervised learning on molecules has incredible potential to be useful in chemistry, drug discovery, and materials science. Luckily, several promising and closely related neural network models invariant to molecular symmetries have already been described in the literature. These models learn a message passing algorithm and aggregation procedure to compute a function of their entire input graph. At this point, the next step is to find a particularly effective variant of this general approach and apply it to chemical prediction benchmarks until we either solve them or reach the limits of the approach. In this paper, we reformulate existing models into a single common framework we call Message Passing Neural Networks (MPNNs) and explore additional novel variations within this framework. Using MPNNs we demonstrate state of the art results on an important molecular property prediction benchmark; these results are strong enough that we believe future work should focus on datasets with larger molecules or more accurate ground truth labels.

3,219 citations


Posted Content
TL;DR: Using MPNNs, state of the art results on an important molecular property prediction benchmark are demonstrated and it is believed future work should focus on datasets with larger molecules or more accurate ground truth labels.
Abstract: Supervised learning on molecules has incredible potential to be useful in chemistry, drug discovery, and materials science. Luckily, several promising and closely related neural network models invariant to molecular symmetries have already been described in the literature. These models learn a message passing algorithm and aggregation procedure to compute a function of their entire input graph. At this point, the next step is to find a particularly effective variant of this general approach and apply it to chemical prediction benchmarks until we either solve them or reach the limits of the approach. In this paper, we reformulate existing models into a single common framework we call Message Passing Neural Networks (MPNNs) and explore additional novel variations within this framework. Using MPNNs we demonstrate state of the art results on an important molecular property prediction benchmark; these results are strong enough that we believe future work should focus on datasets with larger molecules or more accurate ground truth labels.

2,184 citations


Posted Content
TL;DR: In this paper, the authors propose a design for k-selection that operates at up to 55% of theoretical peak performance, enabling a nearest neighbor implementation that is 8.5x faster than prior GPU state of the art.
Abstract: Similarity search finds application in specialized database systems handling complex data such as images or videos, which are typically represented by high-dimensional features and require specific indexing structures. This paper tackles the problem of better utilizing GPUs for this task. While GPUs excel at data-parallel tasks, prior approaches are bottlenecked by algorithms that expose less parallelism, such as k-min selection, or make poor use of the memory hierarchy. We propose a design for k-selection that operates at up to 55% of theoretical peak performance, enabling a nearest neighbor implementation that is 8.5x faster than prior GPU state of the art. We apply it in different similarity search scenarios, by proposing optimized design for brute-force, approximate and compressed-domain search based on product quantization. In all these setups, we outperform the state of the art by large margins. Our implementation enables the construction of a high accuracy k-NN graph on 95 million images from the Yfcc100M dataset in 35 minutes, and of a graph connecting 1 billion vectors in less than 12 hours on 4 Maxwell Titan X GPUs. We have open-sourced our approach for the sake of comparison and reproducibility.

1,663 citations


Posted Content
TL;DR: Graph Attention Networks (GATs) as discussed by the authors leverage masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations.
Abstract: We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).

1,016 citations


Posted Content
TL;DR: A graph auto-encoder framework based on differentiable message passing on the bipartite interaction graph that shows competitive performance on standard collaborative filtering benchmarks and outperforms recent state-of-the-art methods.
Abstract: We consider matrix completion for recommender systems from the point of view of link prediction on graphs. Interaction data such as movie ratings can be represented by a bipartite user-item graph with labeled edges denoting observed ratings. Building on recent progress in deep learning on graph-structured data, we propose a graph auto-encoder framework based on differentiable message passing on the bipartite interaction graph. Our model shows competitive performance on standard collaborative filtering benchmarks. In settings where complimentary feature information or structured data such as a social network is available, our framework outperforms recent state-of-the-art methods.

910 citations


Posted Content
TL;DR: A graph neural network architecture is defined that generalizes several of the recently proposed few-shot learning models and provides improved numerical performance, and is easily extended to variants of few- shot learning, such as semi-supervised or active learning, demonstrating the ability of graph-based models to operate well on 'relational' tasks.
Abstract: We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recently proposed few-shot learning models. Besides providing improved numerical performance, our framework is easily extended to variants of few-shot learning, such as semi-supervised or active learning, demonstrating the ability of graph-based models to operate well on 'relational' tasks.

724 citations


Posted Content
TL;DR: This survey conducts a comprehensive review of the literature in graph embedding and proposes two taxonomies ofGraph embedding which correspond to what challenges exist in differentgraph embedding problem settings and how the existing work addresses these challenges in their solutions.
Abstract: Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximally preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.

691 citations


Proceedings Article
13 Nov 2017
TL;DR: This work considers the prediction of interfaces between proteins, a challenging problem with important applications in drug discovery and design, and examines the performance of existing and newly proposed spatial graph convolution operators for this task.
Abstract: We consider the prediction of interfaces between proteins, a challenging problem with important applications in drug discovery and design, and examine the performance of existing and newly proposed spatial graph convolution operators for this task. By performing convolution over a local neighborhood of a node of interest, we are able to stack multiple layers of convolution and learn effective latent representations that integrate information across the graph that represent the three dimensional structure of a protein of interest. An architecture that combines the learned features across pairs of proteins is then used to classify pairs of amino acid residues as part of an interface or not. In our experiments, several graph convolution operators yielded accuracy that is better than the state-of-the-art SVM method in this task.

608 citations


Proceedings ArticleDOI
01 Jul 2017
TL;DR: A novel graph-based formulation that links and clusters person hypotheses over time by solving an instance of a minimum cost lifted multicut problem and is reported a new state-of-the-art for the MOT16 benchmark.
Abstract: Tracking multiple persons in a monocular video of a crowded scene is a challenging task. Humans can master it even if they loose track of a person locally by re-identifying the same person based on their appearance. Care must be taken across long distances, as similar-looking persons need not be identical. In this work, we propose a novel graph-based formulation that links and clusters person hypotheses over time by solving an instance of a minimum cost lifted multicut problem. Our model generalizes previous works by introducing a mechanism for adding long-range attractive connections between nodes in the graph without modifying the original set of feasible solutions. This allows us to reward tracks that assign detections of similar appearance to the same person in a way that does not introduce implausible solutions. To effectively match hypotheses over longer temporal gaps we develop new deep architectures for re-identification of people. They combine holistic representations extracted with deep networks and body pose layout obtained with a state-of-the-art pose estimation model. We demonstrate the effectiveness of our formulation by reporting a new state-of-the-art for the MOT16 benchmark. The code and pre-trained models are publicly available.

523 citations


Proceedings ArticleDOI
04 Aug 2017
TL;DR: The Motif-based Approximate Personalized PageRank (MAPPR) algorithm is developed, a generalization of the conductance metric for network motifs that finds clusters containing a seed node with minimalmotif conductance, and a theory of node neighborhoods for finding sets that have small motif conductance.
Abstract: Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal \emph{motif conductance}, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology.

489 citations


Posted Content
TL;DR: Graph Signal Processing (GSP) as discussed by the authors aims to develop tools for processing data defined on irregular graph domains, including sampling, filtering, and graph learning, which can be used for processing sensor network data, biological data, and image processing and machine learning.
Abstract: Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.

Posted Content
TL;DR: DyNet is a toolkit for implementing neural network models based on dynamic declaration of network structure that has an optimized C++ backend and lightweight graph representation and is designed to allow users to implement their models in a way that is idiomatic in their preferred programming language.
Abstract: We describe DyNet, a toolkit for implementing neural network models based on dynamic declaration of network structure. In the static declaration strategy that is used in toolkits like Theano, CNTK, and TensorFlow, the user first defines a computation graph (a symbolic representation of the computation), and then examples are fed into an engine that executes this computation and computes its derivatives. In DyNet's dynamic declaration strategy, computation graph construction is mostly transparent, being implicitly constructed by executing procedural code that computes the network outputs, and the user is free to use different network structures for each input. Dynamic declaration thus facilitates the implementation of more complicated network architectures, and DyNet is specifically designed to allow users to implement their models in a way that is idiomatic in their preferred programming language (C++ or Python). One challenge with dynamic declaration is that because the symbolic computation graph is defined anew for every training example, its construction must have low overhead. To achieve this, DyNet has an optimized C++ backend and lightweight graph representation. Experiments show that DyNet's speeds are faster than or comparable with static declaration toolkits, and significantly faster than Chainer, another dynamic declaration toolkit. DyNet is released open-source under the Apache 2.0 license and available at this http URL.

Proceedings ArticleDOI
01 Oct 2017
TL;DR: This paper proposes a 3D graph neural network (3DGNN) that builds a k-nearest neighbor graph on top of 3D point cloud that uses back-propagation through time to train the model.
Abstract: RGBD semantic segmentation requires joint reasoning about 2D appearance and 3D geometric information. In this paper we propose a 3D graph neural network (3DGNN) that builds a k-nearest neighbor graph on top of 3D point cloud. Each node in the graph corresponds to a set of points and is associated with a hidden representation vector initialized with an appearance feature extracted by a unary CNN from 2D images. Relying on recurrent functions, every node dynamically updates its hidden representation based on the current status and incoming messages from its neighbors. This propagation model is unrolled for a certain number of time steps and the final per-node representation is used for predicting the semantic class of each pixel. We use back-propagation through time to train the model. Extensive experiments on NYUD2 and SUN-RGBD datasets demonstrate the effectiveness of our approach.

Journal ArticleDOI
TL;DR: A novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images is presented.
Abstract: We present a novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images. CNN-GS first utilizes a CNN to extract features of specific retinal layer boundaries and train a corresponding classifier to delineate a pilot estimate of the eight layers. Next, a graph search method uses the probability maps created from the CNN to find the final boundaries. We validated our proposed method on 60 volumes (2915 B-scans) from 20 human eyes with non-exudative age-related macular degeneration (AMD), which attested to effectiveness of our proposed technique.

Journal ArticleDOI
TL;DR: A general relation extraction framework based on graph long short-term memory networks (graph LSTMs) that can be easily extended to cross-sentence n-ary relation extraction is explored, demonstrating its effectiveness with both conventional supervised learning and distant supervision.
Abstract: Past work in relation extraction focuses on binary relations in single sentences. Recent NLP inroads in high-valued domains have kindled strong interest in the more general setting of extracting n-ary relations that span multiple sentences. In this paper, we explore a general relation extraction framework based on graph long short-term memory (graph LSTM), which can be easily extended to cross-sentence n-ary relation extraction. The graph formulation provides a unifying way to explore different LSTM approaches and incorporate various intra-sentential and inter-sentential dependencies, such as sequential, syntactic, and discourse relations. A robust contextual representation is learned for the entities, which serves as input to the relation classifier, making it easy for scaling to arbitrary relation arity n, as well as for multi-task learning with related relations. We evaluated this framework in two important domains in precision medicine and demonstrated its effectiveness with both supervised learning and distant supervision. Cross-sentence extraction produced far more knowledge, and multi-task learning significantly improved extraction accuracy. A thorough analysis comparing various LSTM approaches yielded interesting insight on how linguistic analysis impacts the performance.

Journal ArticleDOI
TL;DR: It is shown across both empirical and artificial patient‐control datasets that lower levels of overall FC in either the patient or control group will most often lead to differences in network efficiency and clustering, suggesting that differences in FC across subjects will be artificially inflated or translated into differences innetwork organization.

Journal ArticleDOI
TL;DR: This paper proposes a new unsupervised spectral feature selection model by embedding a graph regularizer into the framework of joint sparse regression for preserving the local structures of data by proposing a novel joint graph sparse coding (JGSC) model.
Abstract: In this paper, we propose a new unsupervised spectral feature selection model by embedding a graph regularizer into the framework of joint sparse regression for preserving the local structures of data. To do this, we first extract the bases of training data by previous dictionary learning methods and, then, map original data into the basis space to generate their new representations, by proposing a novel joint graph sparse coding (JGSC) model. In JGSC, we first formulate its objective function by simultaneously taking subspace learning and joint sparse regression into account, then, design a new optimization solution to solve the resulting objective function, and further prove the convergence of the proposed solution. Furthermore, we extend JGSC to a robust JGSC (RJGSC) via replacing the least square loss function with a robust loss function, for achieving the same goals and also avoiding the impact of outliers. Finally, experimental results on real data sets showed that both JGSC and RJGSC outperformed the state-of-the-art algorithms in terms of ${k}$ -nearest neighbor classification performance.

Posted Content
TL;DR: A novel end-to-end deep auto-encoder is proposed to address unsupervised learning challenges on point clouds, and is shown, in theory, to be a generic architecture that is able to reconstruct an arbitrary point cloud from a 2D grid.
Abstract: Recent deep networks that directly handle points in a point set, e.g., PointNet, have been state-of-the-art for supervised learning tasks on point clouds such as classification and segmentation. In this work, a novel end-to-end deep auto-encoder is proposed to address unsupervised learning challenges on point clouds. On the encoder side, a graph-based enhancement is enforced to promote local structures on top of PointNet. Then, a novel folding-based decoder deforms a canonical 2D grid onto the underlying 3D object surface of a point cloud, achieving low reconstruction errors even for objects with delicate structures. The proposed decoder only uses about 7% parameters of a decoder with fully-connected neural networks, yet leads to a more discriminative representation that achieves higher linear SVM classification accuracy than the benchmark. In addition, the proposed decoder structure is shown, in theory, to be a generic architecture that is able to reconstruct an arbitrary point cloud from a 2D grid. Our code is available at this http URL

Proceedings ArticleDOI
06 Nov 2017
TL;DR: A marginalized graph convolutional network is proposed to corrupt network node content, allowing node content to interact with network features, and marginalizes the corrupted features in a graph autoencoder context to learn graph feature representations.
Abstract: Graph clustering aims to discovercommunity structures in networks, the task being fundamentally challenging mainly because the topology structure and the content of the graphs are difficult to represent for clustering analysis. Recently, graph clustering has moved from traditional shallow methods to deep learning approaches, thanks to the unique feature representation learning capability of deep learning. However, existing deep approaches for graph clustering can only exploit the structure information, while ignoring the content information associated with the nodes in a graph. In this paper, we propose a novel marginalized graph autoencoder (MGAE) algorithm for graph clustering. The key innovation of MGAE is that it advances the autoencoder to the graph domain, so graph representation learning can be carried out not only in a purely unsupervised setting by leveraging structure and content information, it can also be stacked in a deep fashion to learn effective representation. From a technical viewpoint, we propose a marginalized graph convolutional network to corrupt network node content, allowing node content to interact with network features, and marginalizes the corrupted features in a graph autoencoder context to learn graph feature representations. The learned features are fed into the spectral clustering algorithm for graph clustering. Experimental results on benchmark datasets demonstrate the superior performance of MGAE, compared to numerous baselines.

Journal ArticleDOI
TL;DR: This paper investigates the problem of network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control by taking network-induced delays into account and derives a general consensus criterion.

Proceedings ArticleDOI
19 Jun 2017
TL;DR: In this paper, the authors consider two frameworks for studying estimation, learning, and optimization in the presence of significant fractions of arbitrary data, and provide an algorithm for robust learning in a very general stochastic optimization setting.
Abstract: The vast majority of theoretical results in machine learning and statistics assume that the training data is a reliable reflection of the phenomena to be learned. Similarly, most learning techniques used in practice are brittle to the presence of large amounts of biased or malicious data. Motivated by this, we consider two frameworks for studying estimation, learning, and optimization in the presence of significant fractions of arbitrary data. The first framework, list-decodable learning, asks whether it is possible to return a list of answers such that at least one is accurate. For example, given a dataset of n points for which an unknown subset of αn points are drawn from a distribution of interest, and no assumptions are made about the remaining (1 - α)n points, is it possible to return a list of poly(1/α) answers? The second framework, which we term the semi-verified model, asks whether a small dataset of trusted data (drawn from the distribution in question) can be used to extract accurate information from a much larger but untrusted dataset (of which only an α-fraction is drawn from the distribution). We show strong positive results in both settings, and provide an algorithm for robust learning in a very general stochastic optimization setting. This result has immediate implications for robustly estimating the mean of distributions with bounded second moments, robustly learning mixtures of such distributions, and robustly finding planted partitions in random graphs in which significant portions of the graph have been perturbed by an adversary.

Journal ArticleDOI
TL;DR: The notion of a node-variant GF, which allows the simultaneous implementation of multiple (regular) GFs in different nodes of the graph, is introduced, which enables the design of more general operators without undermining the locality in implementation.
Abstract: We study the optimal design of graph filters (GFs) to implement arbitrary linear transformations between graph signals GFs can be represented by matrix polynomials of the graph-shift operator (GSO) Since this operator captures the local structure of the graph, GFs naturally give rise to distributed linear network operators In most setups, the GSO is given so that GF design consists fundamentally in choosing the (filter) coefficients of the matrix polynomial to resemble desired linear transformations We determine spectral conditions under which a specific linear transformation can be implemented perfectly using GFs For the cases where perfect implementation is infeasible, we address the optimization of the filter coefficients to approximate the desired transformation Additionally, for settings where the GSO itself can be modified, we study its optimal design as well After this, we introduce the notion of a node-variant GF, which allows the simultaneous implementation of multiple (regular) GFs in different nodes of the graph This additional flexibility enables the design of more general operators without undermining the locality in implementation Perfect and approximate designs are also studied for this new type of GFs To showcase the relevance of the results in the context of distributed linear network operators, this paper closes with the application of our framework to two particular distributed problems: finite-time consensus and analog network coding

Journal ArticleDOI
TL;DR: This paper proposes a definition of weak stationarity for random graph signals that takes into account the structure of the graph where the random process takes place, while inheriting many of the meaningful properties of the classical time domain definition.
Abstract: Stationarity is a cornerstone property that facilitates the analysis and processing of random signals in the time domain. Although time-varying signals are abundant in nature, in many practical scenarios, the information of interest resides in more irregular graph domains. This lack of regularity hampers the generalization of the classical notion of stationarity to graph signals. This paper proposes a definition of weak stationarity for random graph signals that takes into account the structure of the graph where the random process takes place, while inheriting many of the meaningful properties of the classical time domain definition. Provided that the topology of the graph can be described by a normal matrix, stationary graph processes can be modeled as the output of a linear graph filter applied to a white input. This is shown equivalent to requiring the correlation matrix to be diagonalized by the graph Fourier transform; a fact that is leveraged to define a notion of power spectral density (PSD). Properties of the graph PSD are analyzed and a number of methods for its estimation are proposed. This includes generalizations of nonparametric approaches such as periodograms, window-based average periodograms, and filter banks, as well as parametric approaches, using moving-average, autoregressive, and ARMA processes. Graph stationarity and graph PSD estimation are investigated numerically for synthetic and real-world graph signals.

Journal ArticleDOI
24 Jul 2017
TL;DR: The novel idea is to find a graph shift that, while being consistent with the provided spectral information, endows the network with certain desired properties such as sparsity, and develops efficient inference algorithms stemming from provably tight convex relaxations of natural nonconvex criteria.
Abstract: We address the problem of identifying the structure of an undirected graph from the observation of signals defined on its nodes. Fundamentally, the unknown graph encodes direct relationships between signal elements, which we aim to recover from observable indirect relationships generated by a diffusion process on the graph. The fresh look advocated here leverages concepts from convex optimization and stationarity of graph signals, in order to identify the graph shift operator (a matrix representation of the graph) given only its eigenvectors . These spectral templates can be obtained, e.g., from the sample covariance of independent graph signals diffused on the sought network. The novel idea is to find a graph shift that, while being consistent with the provided spectral information, endows the network with certain desired properties such as sparsity. To that end, we develop efficient inference algorithms stemming from provably tight convex relaxations of natural nonconvex criteria, particularizing the results for two shifts: the adjacency matrix and the normalized Laplacian. Algorithms and theoretical recovery conditions are developed not only when the templates are perfectly known, but also when the eigenvectors are noisy or when only a subset of them are given. Numerical tests showcase the effectiveness of the proposed algorithms in recovering synthetic and real-world networks.

Proceedings ArticleDOI
01 Feb 2017
TL;DR: GraphPIM is presented, a full-stack solution for graph computing that achieves higher performance using PIM functionality and an extension to PIM operations that can further bring performance benefits for more graph applications.
Abstract: With the emergence of data science, graph computing has become increasingly important these days. Unfortunately, graph computing typically suffers from poor performance when mapped to modern computing systems because of the overhead of executing atomic operations and inefficient utilization of the memory subsystem. Meanwhile, emerging technologies, such as Hybrid Memory Cube (HMC), enable the processing-in-memory (PIM) functionality with offloading operations at an instruction level. Instruction offloading to the PIM side has considerable potentials to overcome the performance bottleneck of graph computing. Nevertheless, this functionality for graph workloads has not been fully explored, and its applications and shortcomings have not been well identified thus far. In this paper, we present GraphPIM, a full-stack solution for graph computing that achieves higher performance using PIM functionality. We perform an analysis on modern graph workloads to assess the applicability of PIM offloading and present hardware and software mechanisms to efficiently make use of the PIM functionality. Following the real-world HMC 2.0 specification, GraphPIM provides performance benefits for graph applications without any user code modification or ISA changes. In addition, we propose an extension to PIM operations that can further bring performance benefits for more graph applications. The evaluation results show that GraphPIM achieves up to a 2.4X speedup with a 37% reduction in energy consumption.

Proceedings Article
01 Jan 2017
TL;DR: GraphGAN as mentioned in this paper proposes a game-theoretical minimax game between the generative model and discriminative model, where the generator tries to fit its underlying true connectivity distribution over all other vertices and produces fake samples to fool the discriminator.
Abstract: The goal of graph representation learning is to embed each vertex in a graph into a low-dimensional vector space. Existing graph representation learning methods can be classified into two categories: generative models that learn the underlying connectivity distribution in the graph, and discriminative models that predict the probability of edge existence between a pair of vertices. In this paper, we propose GraphGAN, an innovative graph representation learning framework unifying above two classes of methods, in which the generative model and discriminative model play a game-theoretical minimax game. Specifically, for a given vertex, the generative model tries to fit its underlying true connectivity distribution over all other vertices and produces "fake" samples to fool the discriminative model, while the discriminative model tries to detect whether the sampled vertex is from ground truth or generated by the generative model. With the competition between these two models, both of them can alternately and iteratively boost their performance. Moreover, when considering the implementation of generative model, we propose a novel graph softmax to overcome the limitations of traditional softmax function, which can be proven satisfying desirable properties of normalization, graph structure awareness, and computational efficiency. Through extensive experiments on real-world datasets, we demonstrate that GraphGAN achieves substantial gains in a variety of applications, including link prediction, node classification, and recommendation, over state-of-the-art baselines.

Journal ArticleDOI
TL;DR: A novel method to eliminate the effects of the errors from the projection space (representation) rather than from the input space is presented and a method to construct a sparse similarity graph, called L2-graph is introduced.
Abstract: Under the framework of graph-based learning, the key to robust subspace clustering and subspace learning is to obtain a good similarity graph that eliminates the effects of errors and retains only connections between the data points from the same subspace (i.e., intrasubspace data points). Recent works achieve good performance by modeling errors into their objective functions to remove the errors from the inputs. However, these approaches face the limitations that the structure of errors should be known prior and a complex convex problem must be solved. In this paper, we present a novel method to eliminate the effects of the errors from the projection space (representation) rather than from the input space. We first prove that $\boldsymbol {\ell }_{\boldsymbol {1}}$ -, $\boldsymbol {\ell }_{\boldsymbol {2}}$ -, $\boldsymbol {\ell }_{\boldsymbol {\infty }}$ -, and nuclear-norm-based linear projection spaces share the property of intrasubspace projection dominance, i.e., the coefficients over intrasubspace data points are larger than those over intersubspace data points. Based on this property, we introduce a method to construct a sparse similarity graph, called L2-graph. The subspace clustering and subspace learning algorithms are developed upon L2-graph. We conduct comprehensive experiment on subspace learning, image clustering, and motion segmentation and consider several quantitative benchmarks classification/clustering accuracy, normalized mutual information, and running time. Results show that L2-graph outperforms many state-of-the-art methods in our experiments, including L1-graph, low rank representation (LRR), and latent LRR, least square regression, sparse subspace clustering, and locally linear representation.

Journal ArticleDOI
TL;DR: It is proved that all agents with any initial state can reach output consensus at an optimal solution to the given constrained optimization problem, provided that the graph describing the communication links among agents is undirected and connected.
Abstract: This technical note presents a continuous-time multi-agent system for distributed optimization with an additive objective function composed of individual objective functions subject to bound, equality, and inequality constraints. Each individual objective function is assumed to be convex in the region defined by its local bound constraints only without the need to be globally convex. All agents in the system communicate using a proportional-integral protocol with their output information instead of state information to reduce communication bandwidth. It is proved that all agents with any initial state can reach output consensus at an optimal solution to the given constrained optimization problem, provided that the graph describing the communication links among agents is undirected and connected. It is further proved that the system with only integral protocol is also convergent to the unique optimal solution if each individual objective function is strictly convex. Simulation results are presented to substantiate the theoretical results.

Proceedings ArticleDOI
Chris Quirk1, Hoifung Poon1
29 Jun 2017
TL;DR: This paper proposed a graph representation that can incorporate both standard dependencies and discourse relations, thus providing a unifying way to model relations within and across sentences and extract features from multiple paths in this graph, increasing accuracy and robustness when confronted with linguistic variation and analysis error.
Abstract: The growing demand for structured knowledge has led to great interest in relation extraction, especially in cases with limited supervision. However, existing distance supervision approaches only extract relations expressed in single sentences. In general, cross-sentence relation extraction is under-explored, even in the supervised-learning setting. In this paper, we propose the first approach for applying distant supervision to cross-sentence relation extraction. At the core of our approach is a graph representation that can incorporate both standard dependencies and discourse relations, thus providing a unifying way to model relations within and across sentences. We extract features from multiple paths in this graph, increasing accuracy and robustness when confronted with linguistic variation and analysis error. Experiments on an important extraction task for precision medicine show that our approach can learn an accurate cross-sentence extractor, using only a small existing knowledge base and unlabeled text from biomedical research articles. Compared to the existing distant supervision paradigm, our approach extracted twice as many relations at similar precision, thus demonstrating the prevalence of cross-sentence relations and the promise of our approach.

Journal ArticleDOI
TL;DR: Two matrix factorization methods that use graph regularization in order to learn low-dimensional non-linear manifolds are proposed and developed, which achieved better results than three other state-of-the-art methods in most cases.
Abstract: Experimental determination of drug-target interactions is expensive and time-consuming. Therefore, there is a continuous demand for more accurate predictions of interactions using computational techniques. Algorithms have been devised to infer novel interactions on a global scale where the input to these algorithms is a drug-target network (i.e., a bipartite graph where edges connect pairs of drugs and targets that are known to interact). However, these algorithms had difficulty predicting interactions involving new drugs or targets for which there are no known interactions (i.e., “orphan” nodes in the network). Since data usually lie on or near to low-dimensional non-linear manifolds, we propose two matrix factorization methods that use graph regularization in order to learn such manifolds. In addition, considering that many of the non-occurring edges in the network are actually unknown or missing cases, we developed a preprocessing step to enhance predictions in the “new drug” and “new target” cases by adding edges with intermediate interaction likelihood scores. In our cross validation experiments, our methods achieved better results than three other state-of-the-art methods in most cases. Finally, we simulated some “new drug” and “new target” cases and found that GRMF predicted the left-out interactions reasonably well.