scispace - formally typeset
Search or ask a question

Showing papers on "Graphene published in 2008"


Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations


Journal ArticleDOI
TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Abstract: We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range ∼(4.84 ± 0.44) × 103 to (5.30 ± 0.48) × 103 W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.

11,878 citations


Journal ArticleDOI
TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Abstract: Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.

8,534 citations


Journal ArticleDOI
06 Jun 2008-Science
TL;DR: It is shown that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc � 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science.
Abstract: There are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not depend on material parameters. Examples are the resistivity quantum, h/e2 (h is Planck's constant and e the electron charge), that appears in a variety of transport experiments and the magnetic flux quantum, h/e, playing an important role in the physics of superconductivity. By and large, sophisticated facilities and special measurement conditions are required to observe any of these phenomena. We show that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc feminine 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant (pa = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.

7,952 citations


Journal ArticleDOI
TL;DR: CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here their performance in an ultracapacitor cell is demonstrated, illustrating the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.
Abstract: The surface area of a single graphene sheet is 2630 m2/g, substantially higher than values derived from BET surface area measurements of activated carbons used in current electrochemical double layer capacitors. Our group has pioneered a new carbon material that we call chemically modified graphene (CMG). CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here we demonstrate in an ultracapacitor cell their performance. Specific capacitances of 135 and 99 F/g in aqueous and organic electrolytes, respectively, have been measured. In addition, high electrical conductivity gives these materials consistently good performance over a wide range of voltage scan rates. These encouraging results illustrate the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.

7,505 citations


Journal ArticleDOI
TL;DR: In this paper, a single layer graphene was suspended ∼150nm above a Si/SiO2 gate electrode and electrical contacts to the graphene was achieved by a combination of electron beam lithography and etching.

7,276 citations


Journal ArticleDOI
TL;DR: Graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone are demonstrated.
Abstract: Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

5,600 citations


Journal ArticleDOI
Xiaolin Li1, Xinran Wang1, Li Zhang1, Sangwon Lee1, Hongjie Dai1 
29 Feb 2008-Science
TL;DR: A chemical route to produce graphene nanoribbons with width below 10 nanometers was developed, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics.
Abstract: We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics. The GNRs were solution-phase-derived, stably suspended in solvents with noncovalent polymer functionalization, and exhibited ultrasmooth edges with possibly well-defined zigzag or armchair-edge structures. Electrical transport experiments showed that, unlike single-walled carbon nanotubes, all of the sub-10-nanometer GNRs produced were semiconductors and afforded graphene field effect transistors with on-off ratios of about 10(7) at room temperature.

4,579 citations


Journal ArticleDOI
TL;DR: Transparent, conductive, and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window electrodes for solid-state dye-sensitized solar cells, are demonstrated and show high chemical and thermal stabilities and an ultrasmooth surface with tunable wettability.
Abstract: Transparent, conductive, and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window electrodes for solid-state dye-sensitized solar cells, are demonstrated. These graphene films are fabricated from exfoliated graphite oxide, followed by thermal reduction. The obtained films exhibit a high conductivity of 550 S/cm and a transparency of more than 70% over 1000−3000 nm. Furthermore, they show high chemical and thermal stabilities as well as an ultrasmooth surface with tunable wettability.

4,314 citations


Journal ArticleDOI
TL;DR: A solution-based method is reported that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas, which could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.
Abstract: The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.

4,174 citations


Journal ArticleDOI
TL;DR: Only the alternating pattern of single-double carbon bonds within the sp2 carbon ribbons provides a satisfactory explanation for the experimentally observed blue shift of the G band of the Raman spectra relative to graphite.
Abstract: We investigate Raman spectra of graphite oxide and functionalized graphene sheets with epoxy and hydroxyl groups and Stone−Wales and 5−8−5 defects by first-principles calculations to interpret our experimental results. Only the alternating pattern of single−double carbon bonds within the sp2 carbon ribbons provides a satisfactory explanation for the experimentally observed blue shift of the G band of the Raman spectra relative to graphite. To obtain these single−double bonds, it is necessary to have sp3 carbons on the edges of a zigzag carbon ribbon.

Journal ArticleDOI
TL;DR: This work demonstrates a top-gated graphene transistor that is able to reach doping levels of up to 5x1013 cm-2, which is much higher than those previously reported.
Abstract: The recent discovery of graphene has led to many advances in two-dimensional physics and devices. The graphene devices fabricated so far have relied on $SiO_2$ back gating. Electrochemical top gating is widely used for polymer transistors, and has also been successfully applied to carbon nanotubes. Here we demonstrate a top-gated graphene transistor that is able to reach doping levels of up to $5\times 10^{13} cm^{-2}$, which is much higher than those previously reported. Such high doping levels are possible because the nanometre-thick Debye layer in the solid polymer electrolyte gate provides a much higher gate capacitance than the commonly used $SiO_2$ back gate, which is usually about 300 nm thick. In situ Raman measurements monitor the doping. The G peak stiffens and sharpens for both electron and hole doping, but the 2D peak shows a different response to holes and electrons. The ratio of the intensities of the G and 2D peaks shows a strong dependence on doping, making it a sensitive parameter to monitor the doping.

Journal ArticleDOI
TL;DR: Measurements show that mobilities higher than 200 000 cm2/V s are achievable, if extrinsic disorder is eliminated and a sharp (thresholdlike) increase in resistivity observed above approximately 200 K is unexpected but can qualitatively be understood within a model of a rippled graphene sheet in which scattering occurs on intraripple flexural phonons.
Abstract: We have studied temperature dependences of electron transport in graphene and its bilayer and found extremely low electron-phonon scattering rates that set the fundamental limit on possible charge carrier mobilities at room temperature. Our measurements show that mobilities higher than 200 000 cm2/V s are achievable, if extrinsic disorder is eliminated. A sharp (thresholdlike) increase in resistivity observed above approximately 200 K is unexpected but can qualitatively be understood within a model of a rippled graphene sheet in which scattering occurs on intraripple flexural phonons.

Journal ArticleDOI
Yuxi Xu1, Hua Bai1, Gewu Lu1, Chun Li1, Gaoquan Shi1 
TL;DR: The work presented here will not only open a new way for preparing water-soluble graphene dispersions but also provide a general route for fabricating conducting films based on graphene.
Abstract: Flexible graphene films were prepared by the filtration of water-soluble noncovalently functionalized graphene sheets with pyrenebutyrate. The work presented here will not only open a new way for preparing water-soluble graphene dispersions but also provide a general route for fabricating conducting films based on graphene.

Journal ArticleDOI
09 Feb 2008-ACS Nano
TL;DR: These experiments demonstrate solution-processed GO films have potential as transparent electrodes and sheet resistance and optical transparency using different reduction treatments.
Abstract: Processable, single-layered graphene oxide (GO) is an intriguing nanomaterial with tremendous potential for electronic applications. We spin-coated GO thin-films on quartz and characterized their sheet resistance and optical transparency using different reduction treatments. A thermal graphitization procedure was most effective, producing films with sheet resistances as low as 102 −103 Ω/square with 80% transmittance for 550 nm light. Our experiments demonstrate solution-processed GO films have potential as transparent electrodes.

Journal ArticleDOI
TL;DR: This work shows that the fluctuations are significantly reduced in suspended graphene samples and reports low-temperature mobility approaching 200,000 cm2 V-1 s-1 for carrier densities below 5 x 109 cm-2, which cannot be attained in semiconductors or non-suspended graphene.
Abstract: The discovery of graphene1,2 raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties3,4,5,6 of this one-atom-thick layer of carbon. Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point. However, when the graphene sample is supported on an insulating substrate, potential fluctuations induce charge puddles that obscure the Dirac point physics. Here we show that the fluctuations are significantly reduced in suspended graphene samples and we report low-temperature mobility approaching 200,000 cm2 V−1 s−1 for carrier densities below 5 × 109 cm−2. Such values cannot be attained in semiconductors or non-suspended graphene. Moreover, unlike graphene samples supported by a substrate, the conductivity of suspended graphene at the Dirac point is strongly dependent on temperature and approaches ballistic values at liquid helium temperatures. At higher temperatures, above 100 K, we observe the onset of thermally induced long-range scattering. The novel electronic properties of graphene can be compromised when it is supported on an insulating substrate. However, suspended graphene samples can display low-temperature mobility values that cannot be attained in semiconductors or non-suspended graphene, and the conductivity approaches ballistic values at liquid-helium temperatures.

Journal ArticleDOI
TL;DR: It is shown that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity, and its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate.
Abstract: The linear dispersion relation in graphene gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder or phonons, is independent of carrier density, n. Here we show that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 x1012 cm-2, we infer a mean free path for electron-acoustic phonon scattering of >2 microm and an intrinsic mobility limit of 2 x 105 cm2 V-1 s-1. If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility ( approximately 7.7 x 104 cm2 V-1 s-1; ref. 9) and that of semiconducting carbon nanotubes ( approximately 1 x 105 cm2 V-1 s-1; ref. 10). A strongly temperature-dependent resistivity contribution is observed above approximately 200 K (ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate and limit the room-temperature mobility to approximately 4 x 104 cm2 V-1 s-1, indicating the importance of substrate choice for graphene devices.

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize and explore the biological applications of nano-graphene oxide (NGO), i.e., single-layer graphene oxide sheets down to a few nanometers in lateral width.
Abstract: Two-dimensional graphene offers interesting electronic, thermal, and mechanical properties that are currently being explored for advanced electronics, membranes, and composites. Here we synthesize and explore the biological applications of nano-graphene oxide (NGO), i.e., single-layer graphene oxide sheets down to a few nanometers in lateral width. We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments. We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration. The NGO sheets are found to be photoluminescent in the visible and infrared regions. The intrinsic photoluminescence (PL) of NGO is used for live cell imaging in the near-infrared (NIR) with little background. We found that simple physisorption via π-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro. Owing to its small size, intrinsic optical properties, large specific surface area, low cost, and useful non-covalent interactions with aromatic drug molecules, NGO is a promising new material for biological and medical applications.

Posted Content
TL;DR: It is found that simple physisorption via π-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro.
Abstract: Two-dimensional graphene offers interesting electronic, thermal and mechanical properties that are currently explored for advanced electronics, membranes and composites. Here we synthesize and explore the biological application of nano-graphene oxide NGO, single-layer graphene oxide sheets down to a few nanometers in lateral width. We develop functionalization chemistry to impart solubility and compatibility of NGO in biological environments. We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration. The NGO sheets are found to be photoluminescent in the visible and infrared regions. The intrinsic photoluminescence of NGO is used for live cell imaging in the near-infrared with little background. We found that simple physisorption via pi-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective cancer cell killing in vitro. Owing to the small size, intrinsic optical properties, large specific surface area,low cost, and useful non-covalent interactions with aromatic drug molecules, NGO is a promising new material for biological and medical applications.

Journal ArticleDOI
TL;DR: The lithium storage properties of graphene nanosheet (GNS) materials as high capacity anode materials for rechargeable lithium secondary batteries (LIB) were investigated and the specific capacity of GNS was found to be 540 mAh/g, which is much larger than that of graphite, and this was increased by the incorporation of macromolecules of CNT and C60 to the GNS.
Abstract: The lithium storage properties of graphene nanosheet (GNS) materials as high capacity anode materials for rechargeable lithium secondary batteries (LIB) were investigated. Graphite is a practical anode material used for LIB, because of its capability for reversible lithium ion intercalation in the layered crystals, and the structural similarities of GNS to graphite may provide another type of intercalation anode compound. While the accommodation of lithium in these layered compounds is influenced by the layer spacing between the graphene nanosheets, control of the intergraphene sheet distance through interacting molecules such as carbon nanotubes (CNT) or fullerenes (C60) might be crucial for enhancement of the storage capacity. The specific capacity of GNS was found to be 540 mAh/g, which is much larger than that of graphite, and this was increased up to 730 mAh/g and 784 mAh/g, respectively, by the incorporation of macromolecules of CNT and C60 to the GNS.

Journal ArticleDOI
TL;DR: This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.
Abstract: We demonstrate that a monolayer graphene membrane is impermeable to standard gases including helium. By applying a pressure difference across the membrane, we measure both the elastic constants and the mass of a single layer of graphene. This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.

Journal ArticleDOI
TL;DR: A facile and scalable preparation of aqueous solutions of isolated, sparingly sulfonated graphene is reported, and NMR and FTIR spectra indicate that the bulk of the oxygen-containing functional groups was removed from graphene oxide.
Abstract: A facile and scalable preparation of aqueous solutions of isolated, sparingly sulfonated graphene is reported. 13C NMR and FTIR spectra indicate that the bulk of the oxygen-containing functional groups was removed from graphene oxide. The electrical conductivity of thin evaporated films of graphene (1250 S/m) relative to similarly prepared graphite (6120 S/m) implies that an extended conjugated sp2 network is restored in the water soluble graphene.

Journal ArticleDOI
29 Aug 2008-Langmuir
TL;DR: In all of these solvents, full exfoliation of the graphite oxide material into individual, single-layer graphene oxide sheets was achieved by sonication, and graphene oxide dispersions exhibited long-term stability and were made of sheets between a few hundred nanometers and a few micrometers large.
Abstract: The dispersion behavior of graphene oxide in different organic solvents has been investigated. As-prepared graphite oxide could be dispersed in N,N-dimethylformamide, N-methyl-2-pyrrolidone, tetrahydrofuran, and ethylene glycol. In all of these solvents, full exfoliation of the graphite oxide material into individual, single-layer graphene oxide sheets was achieved by sonication. The graphene oxide dispersions exhibited long-term stability and were made of sheets between a few hundred nanometers and a few micrometers large, similar to the case of graphene oxide dispersions in water. These results should facilitate the manipulation and processing of graphene-based materials for different applications.

Journal ArticleDOI
03 Jul 2008-ACS Nano
TL;DR: The photocatalytic methodology not only provides an on-demand UV-assisted reduction technique but also opens up new ways to obtain photoactive graphene-semiconductor composites.
Abstract: Graphene oxide suspended in ethanol undergoes reduction as it accepts electrons from UV-irradiated TiO2 suspensions. The reduction is accompanied by changes in the absorption of the graphene oxide, as the color of the suspension shifts from brown to black. The direct interaction between TiO2 particles and graphene sheets hinders the collapse of exfoliated sheets of graphene. Solid films cast on a borosilicate glass gap separated by gold-sputtered terminations show an order of magnitude decrease in lateral resistance following reduction with the TiO2 photocatalyst. The photocatalytic methodology not only provides an on-demand UV-assisted reduction technique but also opens up new ways to obtain photoactive graphene-semiconductor composites.

Journal ArticleDOI
TL;DR: In this paper, an exact solution for the electromagnetic field due to an electric current in the presence of a surface conductivity model of graphene is obtained in terms of dyadic Green's functions represented as Sommerfeld integrals.
Abstract: An exact solution is obtained for the electromagnetic field due to an electric current in the presence of a surface conductivity model of graphene. The graphene is represented by an infinitesimally thin, local, and isotropic two-sided conductivity surface. The field is obtained in terms of dyadic Green’s functions represented as Sommerfeld integrals. The solution of plane wave reflection and transmission is presented, and surface wave propagation along graphene is studied via the poles of the Sommerfeld integrals. For isolated graphene characterized by complex surface conductivity σ=σ′+jσ″, a proper transverse-electric surface wave exists if and only if σ″>0 (associated with interband conductivity), and a proper transverse-magnetic surface wave exists for σ″<0 (associated with intraband conductivity). By tuning the chemical potential at infrared frequencies, the sign of σ″ can be varied, allowing for some control over surface wave properties.

Journal ArticleDOI
TL;DR: It is shown that epitaxy on Ru(0001) produces arrays of macroscopic single-crystalline graphene domains in a controlled, layer-by-layer fashion, and demonstrates a route towards rational graphene synthesis on transition-metal templates for applications in electronics, sensing or catalysis.
Abstract: Graphene has been used to explore the fascinating electronic properties of ideal two-dimensional carbon, and shows great promise for quantum device architectures. The primary method for isolating graphene, micromechanical cleavage of graphite, is di cult to scale up for applications. Epitaxial growth is an attractive alternative, but achieving large graphene domains with uniform thickness remains a challenge, and substrate bonding may strongly a ect the electronic properties of epitaxial graphene layers. Here, we show that epitaxy on Ru(0001) produces arrays of macroscopic single-crystalline graphene domains in a controlled, layer-by-layer fashion. Whereas the first graphene layer indeed interacts strongly with the metal substrate, the second layer is almost completely detached, shows weak electronic coupling to the metal, and hence retains the inherent electronic structure of graphene. Our findings demonstrate a route towards rational graphene synthesis on transition-metal templates for applications in electronics, sensing or catalysis.

Journal ArticleDOI
TL;DR: In this article, the authors use density functional theory to study how graphene is doped by adsorption on metal substrates and find that weak bonding on Al, Ag, Cu, Au, and Pt, while preserving its unique electronic structure, can still shift the Fermi level with respect to the conical point by 0:5 eV.
Abstract: Making devices with graphene necessarily involves making contacts with metals. We use density functional theory to study how graphene is doped by adsorption on metal substrates and find that weak bonding on Al, Ag, Cu, Au, and Pt, while preserving its unique electronic structure, can still shift the Fermi level with respect to the conical point by 0:5 eV. At equilibrium separations, the crossover from p-type to n-type doping occurs for a metal work function of 5:4 eV, a value much larger than the graphene work function of 4.5 eV. The numerical results for the Fermi level shift in graphene are described very well by a simple analytical model which characterizes the metal solely in terms of its work function, greatly extending their applicability.

Journal ArticleDOI
18 Apr 2008-Science
TL;DR: This work reports on electron transport in quantum dot devices carved entirely from graphene, demonstrating the possibility of molecular-scale electronics based on graphene.
Abstract: The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of molecular-scale electronics based on graphene.

Journal ArticleDOI
TL;DR: It is reported that the exfoliation-reintercalation-expansion of graphite can produce high-quality single-layer graphene sheets stably suspended in organic solvents that exhibit high electrical conductance at room and cryogenic temperatures.
Abstract: Graphene is an intriguing material with properties that are distinct from those of other graphitic systems1,2,3,4,5. The first samples of pristine graphene were obtained by ‘peeling off’2,6 and epitaxial growth5,7. Recently, the chemical reduction of graphite oxide was used to produce covalently functionalized single-layer graphene oxide8,9,10,11,12,13,14,15. However, chemical approaches for the large-scale production of highly conducting graphene sheets remain elusive. Here, we report that the exfoliation–reintercalation–expansion of graphite can produce high-quality single-layer graphene sheets stably suspended in organic solvents. The graphene sheets exhibit high electrical conductance at room and cryogenic temperatures. Large amounts of graphene sheets in organic solvents are made into large transparent conducting films by Langmuir–Blodgett assembly in a layer-by-layer manner. The chemically derived, high-quality graphene sheets could lead to future scalable graphene devices. The first samples of pristine graphene were obtained by 'peeling off' and epitaxial growth, but chemical approaches are more suited to large-scale production. Exfoliation, reintercalation and expansion of graphite can produce high-quality single-layer graphene sheets suspended in organic solvents, and these sheets can be made into large transparent films by Langmuir–Blodgett assembly.

Journal ArticleDOI
TL;DR: In this paper, a study was conducted to demonstrate that highly ordered graphene paper can be prepared by directional flow-induced assembly of graphene sheets that are well dispersed in solution, which can enhance its mechanical stiffness and strength, and also electrical conductivity.
Abstract: A study was conducted to demonstrate that highly ordered graphene paper can be prepared by directional flow-induced assembly of graphene sheets that are well dispersed in solution. Moderate thermal annealing can enhance its mechanical stiffness and strength, and also electrical conductivity. Scanning electron microscopy (SEM) analysis reveals that the surface of the graphene paper is quite smooth and the fracture edges of the papers exhibit a layered structure through the entire cross-section. The study has also shown the results of cell culture experiments, which indicate that graphene paper may be biocompatible and therefore suitable for biomedical applications. The combination of the exceptional mechanical strength, thermal stability, high electrical conductivity, and biocompatibility makes graphene paper a promising material for many technological applications, such as inclusion in heart valves.