scispace - formally typeset
Search or ask a question

Showing papers on "Graphene published in 2020"


Journal ArticleDOI
TL;DR: Graphene and graphene oxide have attracted tremendous interest over the past decade due to their unique and excellent electronic, optical, mechanical, and chemical properties as discussed by the authors, and a review focusing on the functional modification of GAs is presented in this paper.
Abstract: Graphene and graphene oxide have attracted tremendous interest over the past decade due to their unique and excellent electronic, optical, mechanical, and chemical properties. This review focuses on the functional modification of graphene and graphene oxide. First, the basic structure, preparation methods and properties of graphene and graphene oxide are briefly described. Subsequently, the methods for the reduction of graphene oxide are introduced. Next, the functionalization of graphene and graphene oxide is mainly divided into covalent binding modification, non-covalent binding modification and elemental doping. Then, the properties and application prospects of the modified products are summarized. Finally, the current challenges and future research directions are presented in terms of surface functional modification for graphene and graphene oxide.

503 citations


Journal ArticleDOI
06 May 2020-Nature
TL;DR: Small-angle twisted bilayer–bilayer graphene is tunable by the twist angle and electric and magnetic fields, and can be used to gain further insights into correlated states in two-dimensional superlattices.
Abstract: The recent discovery of correlated insulator states and superconductivity in magic-angle twisted bilayer graphene1,2 has enabled the experimental investigation of electronic correlations in tunable flat-band systems realized in twisted van der Waals heterostructures3-6. This novel twist angle degree of freedom and control should be generalizable to other two-dimensional systems, which may exhibit similar correlated physics behaviour, and could enable techniques to tune and control the strength of electron-electron interactions. Here we report a highly tunable correlated system based on small-angle twisted bilayer-bilayer graphene (TBBG), consisting of two rotated sheets of Bernal-stacked bilayer graphene. We find that TBBG exhibits a rich phase diagram, with tunable correlated insulator states that are highly sensitive to both the twist angle and the application of an electric displacement field, the latter reflecting the inherent polarizability of Bernal-stacked bilayer graphene7,8. The correlated insulator states can be switched on and off by the displacement field at all integer electron fillings of the moire unit cell. The response of these correlated states to magnetic fields suggests evidence of spin-polarized ground states, in stark contrast to magic-angle twisted bilayer graphene. Furthermore, in the regime of lower twist angles, TBBG shows multiple sets of flat bands near charge neutrality, resulting in numerous correlated states corresponding to half-filling of each of these flat bands, all of which are tunable by the displacement field as well. Our results could enable the exploration of twist-angle- and electric-field-controlled correlated phases of matter in multi-flat-band twisted superlattices.

501 citations


Journal ArticleDOI
TL;DR: In this article, a 3D copper nanowires-thermally annealed graphene aerogel (CuNWs-TAGA) framework is firstly prepared by freeze-drying followed by thermal annealing from CuNWs, graphene oxide (GO) and Lascorbic acid.
Abstract: 3D copper nanowires-thermally annealed graphene aerogel (CuNWs-TAGA) framework is firstly prepared by freeze-drying followed by thermal annealing from CuNWs, graphene oxide (GO) and L-ascorbic acid. Epoxy resin is then poured back into the above 3D CuNWs-TAGA framework to fabricate the CuNWs-TAGA/epoxy nanocomposites. CuNWs with average diameter of about 120 nm and length of approximate 10 μm are successfully prepared. When the mass fraction of CuNWs-TAGA is 7.2 wt% (6.0–1.2 wt% CuNWs-TAGA), the thermal conductivity coefficient (λ) value of the CuNWs-TAGA/epoxy nanocomposites reaches the maximum of 0.51 W/mK. Meantime, the CuNWs-TAGA/epoxy nanocomposites exhibit the maximum electromagnetic interference shielding effectiveness (EMI SE) value of 47 dB and electrical conductivity (σ) of 120.8 S/m, ascribed to perfect 3D CuNWs-TAGA conductive network structures. Meanwhile, the corresponding elasticity modulus, hardness, glass transition temperature (Tg) and heat-resistance index (THRI) of the CuNWs-TAGA/epoxy nanocomposites increase to 4.69 GPa, 0.33 GPa, 126.3 °C and 181.7 °C, respectively.

482 citations


Journal ArticleDOI
TL;DR: The observation of a light-induced anomalous Hall effect in monolayer graphene driven by a femtosecond pulse of circularly polarized light reveals multiple features that reflect a Floquet-engineered topological band structure similar to the band structure originally proposed by Haldane 10 .
Abstract: Many non-equilibrium phenomena have been discovered or predicted in optically driven quantum solids1. Examples include light-induced superconductivity2,3 and Floquet-engineered topological phases4–8. These are short-lived effects that should lead to measurable changes in electrical transport, which can be characterized using an ultrafast device architecture based on photoconductive switches9. Here, we report the observation of a light-induced anomalous Hall effect in monolayer graphene driven by a femtosecond pulse of circularly polarized light. The dependence of the effect on a gate potential used to tune the Fermi level reveals multiple features that reflect a Floquet-engineered topological band structure4,5, similar to the band structure originally proposed by Haldane10. This includes an approximately 60 meV wide conductance plateau centred at the Dirac point, where a gap of equal magnitude is predicted to open. We find that when the Fermi level lies within this plateau the estimated anomalous Hall conductance saturates around 1.8 ± 0.4 e2/h. A transient topological response in graphene is driven by a short pulse of light. When the Fermi energy is in the predicted band gap the Hall conductance is around two conductance quanta. An ultrafast detection technique enables the measurement.

454 citations


Journal ArticleDOI
TL;DR: In this article, the magic-angle twisted bilayer bilayer graphene has been shown to have properties that are sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates and twist-angle variation.
Abstract: Near a magic twist angle, bilayer graphene transforms from a weakly correlated Fermi liquid to a strongly correlated two-dimensional electron system with properties that are extraordinarily sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates and twist-angle variation. Among other phenomena, magic-angle twisted bilayer graphene hosts superconductivity, interaction-induced insulating states, magnetism, electronic nematicity, linear-in-temperature low-temperature resistivity and quantized anomalous Hall states. We highlight some key research results in this field, point to important questions that remain open and comment on the place of magic-angle twisted bilayer graphene in the strongly correlated quantum matter world.

443 citations


Journal ArticleDOI
TL;DR: In this paper, a graphene-modified WO3/TiO2 step-scheme heterojunction composite photocatalyst was fabricated by a facile one-step hydrothermal method.

416 citations


Journal ArticleDOI
TL;DR: This work shows that magic-angle bilayer graphene exhibits another hallmark of strongly correlated systems-a broad regime of T-linear resistivity above a small density-dependent crossover temperature-for a range of fillings near the correlated insulator.
Abstract: Recent experiments on magic-angle twisted bilayer graphene have discovered correlated insulating behavior and superconductivity at a fractional filling of an isolated narrow band. Here we show that magic-angle bilayer graphene exhibits another hallmark of strongly correlated systems-a broad regime of T-linear resistivity above a small density-dependent crossover temperature-for a range of fillings near the correlated insulator. This behavior is reminiscent of similar behavior in other strongly correlated systems, often denoted "strange metals," such as cuprates, iron pnictides, ruthenates, and cobaltates, where the observations are at odds with expectations in a weakly interacting Fermi liquid. We also extract a transport "scattering rate," which satisfies a near Planckian form that is universally related to the ratio of (k_{B}T/ℏ). Our results establish magic-angle bilayer graphene as a highly tunable platform to investigate strange metal behavior, which could shed light on this mysterious ubiquitous phase of correlated matter.

380 citations


Journal ArticleDOI
27 Jan 2020-Nature
TL;DR: Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.
Abstract: Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment1–3. Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step3,4. Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution4–6. Here we show that flash Joule heating of inexpensive carbon sources—such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste—can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source; when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials. Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.

373 citations


Journal ArticleDOI
TL;DR: The current work paves a new avenue for precise control of single-atom sites on carbon surface for the high-performance and selective electrocatalytic performance of graphene hollow nanospheres.
Abstract: Nitrogen-coordinated metal single atoms in carbon have aroused extensive interest recently and have been growing as an active research frontier in a wide range of key renewable energy reactions and devices Herein, a step-by-step self-assembly strategy is developed to allocate nickel (Ni) and iron (Fe) single atoms respectively on the inner and outer walls of graphene hollow nanospheres (GHSs), realizing separate-sided different single-atom functionalization of hollow graphene The Ni or Fe single atom is demonstrated to be coordinated with four N atoms via the formation of a Ni-N4 or Fe-N4 planar configuration The developed Ni-N4 /GHSs/Fe-N4 Janus material exhibits excellent bifunctional electrocatalytic performance, in which the outer Fe-N4 clusters dominantly contribute to high activity toward the oxygen reduction reaction (ORR), while the inner Ni-N4 clusters are responsible for excellent activity toward the oxygen evolution reaction (OER) Density functional theory calculations demonstrate the structures and reactivities of Fe-N4 and Ni-N4 for the ORR and OER The Ni-N4 /GHSs/Fe-N4 endows a rechargeable Zn-air battery with excellent energy efficiency and cycling stability as an air-cathode, outperforming that of the benchmark Pt/C+RuO2 air-cathode The current work paves a new avenue for precise control of single-atom sites on carbon surface for the high-performance and selective electrocatalysts

369 citations


Journal ArticleDOI
TL;DR: In this article, the authors have reassessed the recent research output on graphene and graphene-based materials for applications in different fields and provided an outline of graphene in terms of fundamental properties, cutting-edge research and applications.

338 citations


Journal ArticleDOI
TL;DR: In this article, the most recent research works on the synthesis of heteroatom-doped graphene materials such as reduced graphene oxide, graphene oxide and graphene nanoribbons are surveyed.

DOI
Claudia Backes1, Claudia Backes2, Amr M. Abdelkader3, Concepción Alonso4, Amandine Andrieux-Ledier5, Raul Arenal6, Raul Arenal7, Jon Azpeitia6, Nilanthy Balakrishnan8, Luca Banszerus9, Julien Barjon5, Ruben Bartali10, Sebastiano Bellani11, Claire Berger12, Claire Berger13, Reinhard Berger14, M.M. Bernal Ortega15, Carlo Bernard16, Peter H. Beton8, André Beyer17, Alberto Bianco18, Peter Bøggild19, Francesco Bonaccorso11, Gabriela Borin Barin20, Cristina Botas, Rebeca A. Bueno6, Daniel Carriazo21, Andres Castellanos-Gomez6, Meganne Christian, Artur Ciesielski18, Tymoteusz Ciuk, Matthew T. Cole, Jonathan N. Coleman1, Camilla Coletti11, Luigi Crema10, Huanyao Cun16, Daniela Dasler22, Domenico De Fazio3, Noel Díez, Simon Drieschner23, Georg S. Duesberg24, Roman Fasel20, Roman Fasel25, Xinliang Feng14, Alberto Fina15, Stiven Forti11, Costas Galiotis26, Costas Galiotis27, Giovanni Garberoglio28, Jorge M. Garcia6, Jose A. Garrido, Marco Gibertini29, Armin Gölzhäuser17, Julio Gómez, Thomas Greber16, Frank Hauke22, Adrian Hemmi16, Irene Hernández-Rodríguez6, Andreas Hirsch22, Stephen A. Hodge3, Yves Huttel6, Peter Uhd Jepsen19, I. Jimenez6, Ute Kaiser30, Tommi Kaplas31, HoKwon Kim29, Andras Kis29, Konstantinos Papagelis32, Konstantinos Papagelis26, Kostas Kostarelos33, Aleksandra Krajewska34, Kangho Lee24, Changfeng Li35, Harri Lipsanen35, Andrea Liscio, Martin R. Lohe14, Annick Loiseau5, Lucia Lombardi3, María Francisca López6, Oliver Martin22, Cristina Martín36, Lidia Martínez6, José A. Martín-Gago6, José I. Martínez6, Nicola Marzari29, Alvaro Mayoral37, Alvaro Mayoral7, John B. McManus1, Manuela Melucci, Javier Méndez6, Cesar Merino, Pablo Merino6, Andreas Meyer22, Elisa Miniussi16, Vaidotas Miseikis11, Neeraj Mishra11, Vittorio Morandi, Carmen Munuera6, Roberto Muñoz6, Hugo Nolan1, Luca Ortolani, A. K. Ott38, A. K. Ott3, Irene Palacio6, Vincenzo Palermo39, John Parthenios26, Iwona Pasternak40, Amalia Patanè8, Maurizio Prato41, Maurizio Prato21, Henri Prevost5, Vladimir Prudkovskiy13, Nicola M. Pugno42, Nicola M. Pugno43, Nicola M. Pugno44, Teófilo Rojo45, Antonio Rossi11, Pascal Ruffieux20, Paolo Samorì18, Léonard Schué5, Eki J. Setijadi10, Thomas Seyller46, Giorgio Speranza10, Christoph Stampfer9, I. Stenger5, Wlodek Strupinski40, Yuri Svirko31, Simone Taioli47, Simone Taioli28, Kenneth B. K. Teo, Matteo Testi10, Flavia Tomarchio3, Mauro Tortello15, Emanuele Treossi, Andrey Turchanin48, Ester Vázquez36, Elvira Villaro, Patrick Rebsdorf Whelan19, Zhenyuan Xia39, Rositza Yakimova, Sheng Yang14, G. Reza Yazdi, Chanyoung Yim24, Duhee Yoon3, Xianghui Zhang17, Xiaodong Zhuang14, Luigi Colombo49, Andrea C. Ferrari3, Mar García-Hernández6 
Trinity College, Dublin1, Heidelberg University2, University of Cambridge3, Autonomous University of Madrid4, Université Paris-Saclay5, Spanish National Research Council6, University of Zaragoza7, University of Nottingham8, RWTH Aachen University9, Kessler Foundation10, Istituto Italiano di Tecnologia11, Georgia Institute of Technology12, University of Grenoble13, Dresden University of Technology14, Polytechnic University of Turin15, University of Zurich16, Bielefeld University17, University of Strasbourg18, Technical University of Denmark19, Swiss Federal Laboratories for Materials Science and Technology20, Ikerbasque21, University of Erlangen-Nuremberg22, Technische Universität München23, Bundeswehr University Munich24, University of Bern25, Foundation for Research & Technology – Hellas26, University of Patras27, Center for Theoretical Studies, University of Miami28, École Polytechnique Fédérale de Lausanne29, University of Ulm30, University of Eastern Finland31, Aristotle University of Thessaloniki32, University of Manchester33, Polish Academy of Sciences34, Aalto University35, University of Castilla–La Mancha36, ShanghaiTech University37, University of Exeter38, Chalmers University of Technology39, Warsaw University of Technology40, University of Trieste41, Instituto Politécnico Nacional42, Queen Mary University of London43, University of Trento44, University of the Basque Country45, Chemnitz University of Technology46, Charles University in Prague47, University of Jena48, University of Texas at Dallas49
29 Jan 2020
TL;DR: In this article, the authors present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures, adopting a 'hands-on' approach, providing practical details and procedures as derived from literature and from the authors' experience, in order to enable the reader to reproduce the results.
Abstract: © 2020 The Author(s). We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resourceconsuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown.

Journal ArticleDOI
TL;DR: In this article, the authors summarized the recent research progress on graphene-based composites for electrochemical energy storage from the structural and interfacial engineering viewpoints, and emphasized the significance of the dimensionality and compound interface characteristics in the rational construction and design of these composites.

Book
29 Nov 2020
TL;DR: The ease of formation of LIG, its simple scale-up, and its utility for a range of applications highlights the easy transition of this substrate-bound graphene foam into commercial device platforms.
Abstract: ConspectusResearch on graphene abounds, from fundamental science to device applications. In pursuit of complementary morphologies, formation of graphene foams is often preferred over the native two-dimensional (2D) forms due to the higher available area. Graphene foams have been successfully prepared by several routes including chemical vapor deposition (CVD) methods and by wet-chemical approaches. For these methods, one often needs either high temperature furnaces and highly pure gases or large amounts of strong acids and oxidants. In 2014, using a commercial laser scribing system as found in most machine shops, a direct lasing of polyimide (PI) plastic films in the air converted the PI into 3D porous graphene, a material termed laser-induced graphene (LIG). This is a one-step method without the need for high-temperature reaction conditions, solvent, or subsequent treatments, and it affords graphene with many five-and seven-membered rings. With such an atomic arrangement, one might call LIG “kinetic grap...


Journal ArticleDOI
TL;DR: The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed and a thorough overview of typical laser-enabled flexible electronic devices that are based on various graphene sources is presented.
Abstract: Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser-treatment-induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser-induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene-based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser-enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene-based electronics may soon undergo fast development.

Journal ArticleDOI
TL;DR: An overview of the various works done on the utilization of graphene-based photocatalytic systems in water purification and especially focusing on the strength of GAs in water disinfection can be found in this paper.

Journal ArticleDOI
TL;DR: By embedding CoFe2O4 (CFO) nanoparticle into N-doped reduced graphene oxide (N-rGO) aerogels, a unique CFO/NrGO aerogel microwave wave absorber with a 3D porous architecture was synthesized via a facile solvothermal method and lyophilization technique.

Journal ArticleDOI
06 Jul 2020-Nature
TL;DR: Tuning the electronic interactions by changing the dielectric environment of twisted bilayer graphene reveals the disappearance of the insulating states and their replacement by superconducting phases, suggesting a competition between the two phases.
Abstract: The coexistence of superconducting and correlated insulating states in magic-angle twisted bilayer graphene1–11 prompts fascinating questions about their relationship. Independent control of the microscopic mechanisms that govern these phases could help uncover their individual roles and shed light on their intricate interplay. Here we report on direct tuning of electronic interactions in this system by changing the separation distance between the graphene and a metallic screening layer12,13. We observe quenching of correlated insulators in devices with screening layer separations that are smaller than the typical Wannier orbital size of 15 nanometres and with twist angles that deviate slightly from the magic angle of 1.10 ± 0.05 degrees. Upon extinction of the insulating orders, the vacated phase space is taken over by superconducting domes that feature critical temperatures comparable to those in devices with strong insulators. In addition, we find that insulators at half-filling can reappear in small out-of-plane magnetic fields of 0.4 tesla, giving rise to quantized Hall states with a Chern number of 2. Our study suggests re-examination of the often-assumed ‘parent-and-child’ relation between the insulating and superconducting phases in moire graphene, and suggests a way of directly probing the microscopic mechanisms of superconductivity in strongly correlated systems. Tuning the electronic interactions by changing the dielectric environment of twisted bilayer graphene reveals the disappearance of the insulating states and their replacement by superconducting phases, suggesting a competition between the two phases.

Journal ArticleDOI
TL;DR: In this article, the authors developed a simple and feasible strategy to introduce highly conductive two-dimensional Ti3C2Tx MXene nanosheets into GO, and then fabricated a lightweight MXene/graphene hybrid foam (MX-rGO) by freeze-drying and reduction heat treatment.

Journal ArticleDOI
TL;DR: An overview of recent progress in investigations of graphene-based SACs is provided, selectively focusing on the stability of metal single-atoms anchored on different sites of graphene support and the catalytic performances of graphene theses for different chemical reactions, including thermocatalysis and electrocatalysis.
Abstract: Research on heterogeneous single-atom catalysts (SACs) has become an emerging frontier in catalysis science because of their advantages in high utilization of noble metals, precisely identified active sites, high selectivity, and tunable activity. Graphene, as a one-atom-thick two-dimensional carbon material with unique structural and electronic properties, has been reported to be a superb support for SACs. Herein, we provide an overview of recent progress in investigations of graphene-based SACs. Among the large number of publications, we will selectively focus on the stability of metal single-atoms (SAs) anchored on different sites of graphene support and the catalytic performances of graphene-based SACs for different chemical reactions, including thermocatalysis and electrocatalysis. We will summarize the fundamental understandings on the electronic structures and their intrinsic connection with catalytic properties of graphene-based SACs, and also provide a brief perspective on the future design of efficient SACs with graphene and graphene-like materials.

Journal ArticleDOI
TL;DR: The most recently developed functionally graded graphene platelets reinforced composite (FG-GPLRC) where GPLs are non-uniformly dispersed with more GPLs in the area where they are most needed to achieve significantly improved mechanical performance has opened up a new avenue for the development of next generation structural forms with an excellent combination of high stiffness, light weight and multi-functionality.

Journal ArticleDOI
TL;DR: In this paper, a flexible reduced graphene oxide (rGO) sheet was crosslinked by a conjugated molecule (1-aminopyrene-disuccinimidyl suberate, AD), which reduced the voids within the graphene sheet and improved the alignment of graphene platelets, resulting in much higher compactness and high toughness.
Abstract: Flexible reduced graphene oxide (rGO) sheets are being considered for applications in portable electrical devices and flexible energy storage systems. However, the poor mechanical properties and electrical conductivities of rGO sheets are limiting factors for the development of such devices. Here we use MXene (M) nanosheets to functionalize graphene oxide platelets through Ti-O-C covalent bonding to obtain MrGO sheets. A MrGO sheet was crosslinked by a conjugated molecule (1-aminopyrene-disuccinimidyl suberate, AD). The incorporation of MXene nanosheets and AD molecules reduces the voids within the graphene sheet and improves the alignment of graphene platelets, resulting in much higher compactness and high toughness. In situ Raman spectroscopy and molecular dynamics simulations reveal the synergistic interfacial interaction mechanisms of Ti-O-C covalent bonding, sliding of MXene nanosheets, and π-π bridging. Furthermore, a supercapacitor based on our super-tough MXene-functionalized graphene sheets provides a combination of energy and power densities that are high for flexible supercapacitors.

Journal ArticleDOI
TL;DR: In this article, the usual insulating behavior in twisted bilayer graphene can be explained by a symmetry breaking that arises when cells in the superlattice are filled with an even number of electrons.
Abstract: An usual insulating behavior in twisted bilayer graphene can be explained by a symmetry breaking that arises when cells in the superlattice are filled with an even number of electrons.


Journal ArticleDOI
TL;DR: In this article, the most important categories of recent applications based on reduced graphene oxide, with the emphasis on the relationship between the enhanced composite/device functionality and methods used to synthesize, to functionalize and/or to process and to structure reduced graphite oxide.
Abstract: Reduced graphene oxide has similar mechanical, optoelectronic or conductive properties to pristine graphene because it possesses a heterogeneous structure comprised of a graphene-like basal plane that is additionally decorated with structural defects and populated with areas containing oxidized chemical groups. The graphene-like properties make reduced graphene oxide a highly desirable material to be used in a plethora of sensorial, biological, environmental or catalytic applications as well as optoelectronic and storage devices. To further advance the development of the existent technologies and to design novel and better applications based on reduced graphene oxide, it is first necessary to understand which synthetic routes and processing strategies are suitable to significantly boost specific properties of this material alone or as a component in various composites. Therefore, in this work, we review the most important categories of recent applications based on reduced graphene oxide, with the emphasis on the relationship between the enhanced composite/device functionality and methods used to synthesize, to functionalize and/or to process and to structure reduced graphene oxide.

Journal ArticleDOI
TL;DR: Three-dimensional structured graphene metamaterial (SGM) is proposed and demonstrated that takes advantages of wavelength selectivity from metallic trench-like structures and broadband dispersionless nature and excellent thermal conductivity from the ultrathin graphene meetingamaterial film.
Abstract: An ideal solar-thermal absorber requires efficient selective absorption with a tunable bandwidth, excellent thermal conductivity and stability, and a simple structure for effective solar thermal energy conversion. Despite various solar absorbers having been demonstrated, these conditions are challenging to achieve simultaneously using conventional materials and structures. Here, we propose and demonstrate three-dimensional structured graphene metamaterial (SGM) that takes advantages of wavelength selectivity from metallic trench-like structures and broadband dispersionless nature and excellent thermal conductivity from the ultrathin graphene metamaterial film. The SGM absorbers exhibit superior solar selective and omnidirectional absorption, flexible tunability of wavelength selective absorption, excellent photothermal performance, and high thermal stability. Impressive solar-to-thermal conversion efficiency of 90.1% and solar-to-vapor efficiency of 96.2% have been achieved. These superior properties of the SGM absorber suggest it has a great potential for practical applications of solar thermal energy harvesting and manipulation. Here, the authors demonstrate a selective solar thermal absorber with wavelength selectivity, arising from metallic trench-like structures, using broadband dispersionless ultrathin graphene metamaterial film, with excellent thermal conductivity.

Journal ArticleDOI
TL;DR: The studies on the cross-reactivity to other water-borne pathogens show that the bioelectrode is highly specific and the gene sensor displays linear response in a wide range of target DNA concentration.
Abstract: Aminopropyltrimethoxysilane (APTMS)-functionalized zinc oxide (ZnO) nanorods and carboxylated graphene nanoflakes (c-GNF) were used in a composite that was electrophoretically deposited on an indium tin oxide (ITO) coated glass substrate. The modified ITO electrodes were characterized using various microscopic and spectroscopic techniques which confirm the deposition of the APTMS-ZnO/c-GNF composite. The electrodes have been used for the covalent immobilization of an Escherichia coli O157:H7 (E. coli)-specific DNA prob. Impedimetric studies revealed that the gene sensor displays linear response in a wide range of target DNA concentration (10−16 M to 10−6 M) with a detection limit of 0.1 fM. The studies on the cross-reactivity to other water-borne pathogens show that the bioelectrode is highly specific.

Journal ArticleDOI
TL;DR: In this article, a 2D carbon nanotube and 2D graphene material have been used for the first time in the development of material science, and they have played significant roles in our daily life and the development in material science.
Abstract: Carbon materials, with their diverse allotropes, have played significant roles in our daily life and the development of material science. Following 0D C60 and 1D carbon nanotube, 2D graphene materi...

Journal ArticleDOI
TL;DR: In this paper, the displacement field-tunable electronic phases in twisted double bilayer graphene have been shown to be stable at half-filled conduction bands in an intermediate range of displacement fields.
Abstract: Electron–electron interactions play an important role in graphene and related systems and can induce exotic quantum states, especially in a stacked bilayer with a small twist angle1–7. For bilayer graphene where the two layers are twisted by the ‘magic angle’, flat band and strong many-body effects lead to correlated insulating states and superconductivity4–7. In contrast to monolayer graphene, the band structure of untwisted bilayer graphene can be further tuned by a displacement field8–10, providing an extra degree of freedom to control the flat band that should appear when two bilayers are stacked on top of each other. Here, we report the discovery and characterization of displacement field-tunable electronic phases in twisted double bilayer graphene. We observe insulating states at a half-filled conduction band in an intermediate range of displacement fields. Furthermore, the resistance gap in the correlated insulator increases with respect to the in-plane magnetic fields and we find that the g factor, according to the spin Zeeman effect, is ~2, indicating spin polarization at half-filling. These results establish twisted double bilayer graphene as an easily tunable platform for exploring quantum many-body states. Placing two Bernal-stacked graphene bilayers on top of each other with a small twist angle gives correlated states. As the band structure can be tuned by an electric field, this platform is a more varied setting to study correlated electrons.