scispace - formally typeset
Search or ask a question
Topic

Graphene

About: Graphene is a research topic. Over the lifetime, 144547 publications have been published within this topic receiving 4935514 citations. The topic is also known as: monolayer graphite.


Papers
More filters
Journal ArticleDOI
TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Abstract: Graphene devices on standard SiO(2) substrates are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene. Although suspending the graphene above the substrate leads to a substantial improvement in device quality, this geometry imposes severe limitations on device architecture and functionality. There is a growing need, therefore, to identify dielectrics that allow a substrate-supported geometry while retaining the quality achieved with a suspended sample. Hexagonal boron nitride (h-BN) is an appealing substrate, because it has an atomically smooth surface that is relatively free of dangling bonds and charge traps. It also has a lattice constant similar to that of graphite, and has large optical phonon modes and a large electrical bandgap. Here we report the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices on single-crystal h-BN substrates, by using a mechanical transfer process. Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2). These devices also show reduced roughness, intrinsic doping and chemical reactivity. The ability to assemble crystalline layered materials in a controlled way permits the fabrication of graphene devices on other promising dielectrics and allows for the realization of more complex graphene heterostructures.

6,261 citations

Journal ArticleDOI
TL;DR: The use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene is reviewed, which is both versatile and scalable, and is adaptable to a wide variety of applications.
Abstract: Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications.

6,178 citations

Journal ArticleDOI
TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract: Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

5,673 citations

Journal ArticleDOI
TL;DR: The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.
Abstract: In this work we present a low cost and scalable technique, via ambient pressure chemical vapor deposition (CVD) on polycrystalline Ni films, to fabricate large area (∼cm2) films of single- to few-layer graphene and to transfer the films to nonspecific substrates. These films consist of regions of 1 to ∼12 graphene layers. Single- or bilayer regions can be up to 20 μm in lateral size. The films are continuous over the entire area and can be patterned lithographically or by prepatterning the underlying Ni film. The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.

5,663 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
98% related
Nanoparticle
85.9K papers, 2.6M citations
95% related
Oxide
213.4K papers, 3.6M citations
92% related
Thin film
275.5K papers, 4.5M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20239,731
202220,740
202110,322
202012,811
201916,069