scispace - formally typeset
Search or ask a question
Topic

Graphical model

About: Graphical model is a research topic. Over the lifetime, 10476 publications have been published within this topic receiving 415620 citations.


Papers
More filters
Book
01 Jan 1995
TL;DR: Bayesian Learning for Neural Networks shows that Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional neural network learning methods.
Abstract: From the Publisher: Artificial "neural networks" are now widely used as flexible models for regression classification applications, but questions remain regarding what these models mean, and how they can safely be used when training data is limited. Bayesian Learning for Neural Networks shows that Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional neural network learning methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. Use of these models in practice is made possible using Markov chain Monte Carlo techniques. Both the theoretical and computational aspects of this work are of wider statistical interest, as they contribute to a better understanding of how Bayesian methods can be applied to complex problems. Presupposing only the basic knowledge of probability and statistics, this book should be of interest to many researchers in statistics, engineering, and artificial intelligence. Software for Unix systems that implements the methods described is freely available over the Internet.

3,846 citations

Journal ArticleDOI
TL;DR: A new framework for discovering interactions between genes based on multiple expression measurements is proposed and a method for recovering gene interactions from microarray data is described using tools for learning Bayesian networks.
Abstract: DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a "snapshot" of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biological features of cellular systems. In this paper, we propose a new framework for discovering interactions between genes based on multiple expression measurements. This framework builds on the use of Bayesian networks for representing statistical dependencies. A Bayesian network is a graph-based model of joint multivariate probability distributions that captures properties of conditional independence between variables. Such models are attractive for their ability to describe complex stochastic processes and because they provide a clear methodology for learning from (noisy) observations. We start by showing how Bayesian networks can describe interactions between genes. We then describe a method for recovering gene interactions from microarray data using tools for learning Bayesian networks. Finally, we demonstrate this method on the S. cerevisiae cell-cycle measurements of Spellman et al. (1998).

3,507 citations

Posted Content
TL;DR: This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF).
Abstract: Deep Convolutional Neural Networks (DCNNs) have recently shown state of the art performance in high level vision tasks, such as image classification and object detection. This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification (also called "semantic image segmentation"). We show that responses at the final layer of DCNNs are not sufficiently localized for accurate object segmentation. This is due to the very invariance properties that make DCNNs good for high level tasks. We overcome this poor localization property of deep networks by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF). Qualitatively, our "DeepLab" system is able to localize segment boundaries at a level of accuracy which is beyond previous methods. Quantitatively, our method sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 71.6% IOU accuracy in the test set. We show how these results can be obtained efficiently: Careful network re-purposing and a novel application of the 'hole' algorithm from the wavelet community allow dense computation of neural net responses at 8 frames per second on a modern GPU.

3,389 citations

Journal ArticleDOI
TL;DR: Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach to combining first-order logic and probabilistic graphical models in a single representation.
Abstract: We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a first-order formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach.

2,916 citations

01 Jan 2002
TL;DR: This thesis will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in Dbns, and how to learn DBN models from sequential data.
Abstract: Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart Russell, Chair Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data. In particular, the main novel technical contributions of this thesis are as follows: a way of representing Hierarchical HMMs as DBNs, which enables inference to be done in O(T ) time instead of O(T ), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T ) space instead of O(T ); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.

2,757 citations


Network Information
Related Topics (5)
Deep learning
79.8K papers, 2.1M citations
88% related
Support vector machine
73.6K papers, 1.7M citations
87% related
Robustness (computer science)
94.7K papers, 1.6M citations
87% related
Cluster analysis
146.5K papers, 2.9M citations
86% related
Convolutional neural network
74.7K papers, 2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20251
20242
2023162
2022351
2021537
2020588