scispace - formally typeset
Search or ask a question
Topic

Graphite

About: Graphite is a research topic. Over the lifetime, 56921 publications have been published within this topic receiving 1045677 citations. The topic is also known as: graphite-2H & graphite-3R.


Papers
More filters
Journal ArticleDOI
TL;DR: On the other hand, in this paper, a superparamagnetically collapsed Mossbauer spectrum is obtained for carbon with fewer active sites, and these particles sinter and carburize in a manner more similar to that of Fe particles supported on graphite.
Abstract: on carbon. These particles can interact with the active sites of the carbon to form a species a t the metal-carbon interface which is stable against high-temperature reduction. This interaction may occur via oxygen atoms bonding with both the carbon surface and iron atoms contacting the carbon. This oxygen could be provided by dissociation of the C O ligands during decomposition. The remainder of the surface Fe can exist in either a reduced or carburized state, but the small size of these particles results in either case in a superparamagnetically collapsed Mossbauer spectrum. For carbons with fewer active sites, more of the particles are unbound, and these particles sinter and carburize in a manner more similar to that of Fe particles supported on graphite.

11,221 citations

Journal ArticleDOI
TL;DR: Raman spectra are reported from single crystals of graphite and other graphite materials as mentioned in this paper, and the Raman intensity of this band is inversely proportional to the crystallite size and is caused by a breakdown of the k-selection rule.
Abstract: Raman spectra are reported from single crystals of graphite and other graphite materials. Single crystals of graphite show one single line at 1575 cm−1. For the other materials like stress‐annealed pyrolitic graphite, commercial graphites, activated charcoal, lampblack, and vitreous carbon another line is detected at 1355 cm−1. The Raman intensity of this band is inversely proportional to the crystallite size and is caused by a breakdown of the k‐selection rule. The intensity of this band allows an estimate of the crystallite size in the surface layer of any carbon sample. Two in‐plane force constants are calculated from the frequencies.

9,373 citations

Journal ArticleDOI
TL;DR: Graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone are demonstrated.
Abstract: Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

5,600 citations

Journal ArticleDOI
24 Jun 2011-Science
TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Abstract: Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp 2 -bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

5,486 citations

Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: Graphene oxide paper is reported, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets that outperforms many other paper-like materials in stiffness and strength.
Abstract: Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.

5,117 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
93% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Graphene
144.5K papers, 4.9M citations
90% related
Thin film
275.5K papers, 4.5M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,888
20224,091
20211,674
20202,331
20192,932
20183,054