scispace - formally typeset
Search or ask a question

Showing papers on "Gravitation published in 2018"


Journal ArticleDOI
Roberto Abuter1, António Amorim2, Narsireddy Anugu3, M. Bauböck4, Myriam Benisty5, Jean-Philippe Berger5, Jean-Philippe Berger1, Nicolas Blind6, H. Bonnet1, Wolfgang Brandner4, A. Buron4, C. Collin7, F. Chapron7, Yann Clénet7, V. dCoudé u Foresto7, P. T. de Zeeuw8, P. T. de Zeeuw4, Casey Deen4, F. Delplancke-Ströbele1, Roderick Dembet1, Roderick Dembet7, Jason Dexter4, Gilles Duvert5, Andreas Eckart4, Andreas Eckart9, Frank Eisenhauer4, Gert Finger1, N. M. Förster Schreiber4, P. Fédou7, Paulo J. V. Garcia2, Paulo J. V. Garcia3, R. Garcia Lopez4, R. Garcia Lopez10, Feng Gao4, Eric Gendron7, Reinhard Genzel11, Reinhard Genzel4, Stefan Gillessen4, Paulo Gordo2, Maryam Habibi4, Xavier Haubois1, M. Haug1, F. Haußmann4, Th. Henning4, Stefan Hippler4, Matthew Horrobin9, Z. Hubert4, Z. Hubert7, Norbert Hubin1, A. Jimenez Rosales4, Lieselotte Jochum1, Laurent Jocou5, Andreas Kaufer1, S. Kellner4, Sarah Kendrew12, Sarah Kendrew4, Pierre Kervella7, Yitping Kok4, Martin Kulas4, Sylvestre Lacour7, V. Lapeyrère7, Bernard Lazareff5, J.-B. Le Bouquin5, Pierre Léna7, Magdalena Lippa4, Rainer Lenzen4, Antoine Mérand1, E. Müler4, E. Müler1, Udo Neumann4, Thomas Ott4, L. Palanca1, Thibaut Paumard7, Luca Pasquini1, Karine Perraut5, Guy Perrin7, Oliver Pfuhl4, P. M. Plewa4, Sebastian Rabien4, A. Ramirez1, Joany Andreina Manjarres Ramos4, C. Rau4, G. Rodríguez-Coira7, R.-R. Rohloff4, Gérard Rousset7, J. Sanchez-Bermudez1, J. Sanchez-Bermudez4, Silvia Scheithauer4, Markus Schöller1, N. Schuler1, Jason Spyromilio1, Odele Straub7, Christian Straubmeier9, Eckhard Sturm4, Linda J. Tacconi4, Konrad R. W. Tristram1, Frederic H. Vincent7, S. von Fellenberg4, Imke Wank9, Idel Waisberg4, Felix Widmann4, Ekkehard Wieprecht4, M. Wiest9, Erich Wiezorrek4, Julien Woillez1, S. Yazici9, S. Yazici4, D. Ziegler7, Gérard Zins1 
TL;DR: Eisenhauer et al. as mentioned in this paper detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s−1/c with different statistical analysis methods.
Abstract: The highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A✻ is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU ≈ 1400 Schwarzschild radii, the star has an orbital speed of ≈7650 km s−1, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s−1/c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f , with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 ± 0.09|stat ± 0.15|sys. The S2 data are inconsistent with pure Newtonian dynamics.Key words: Galaxy: center / gravitation / black hole physics⋆ This paper is dedicated to Tal Alexander, who passed away about a week before the pericentre approach of S2.⋆⋆ GRAVITY is developed in a collaboration by the Max Planck Institute for extraterrestrial Physics, LESIA of Paris Observatory/CNRS/Sorbonne Universite/Univ. Paris Diderot and IPAG of Universite Grenoble Alpes/CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the CENTRA – Centro de Astrofisica e Gravitacao, and the European Southern Observatory.⋆⋆⋆ Corresponding author: F. Eisenhauer e-mail: eisenhau@mpe.mpg.de

693 citations


Book
16 Mar 2018
TL;DR: In this paper, a review of theories of states of quantum matter without quasiparticle excitations is provided through a holographic duality with gravitational theories in an emergent spatial dimension.
Abstract: We present a review of theories of states of quantum matter without quasiparticle excitations. Solvable examples of such states are provided through a holographic duality with gravitational theories in an emergent spatial dimension. We review the duality between gravitational backgrounds and the various states of quantum matter which live on the boundary. We then describe quantum matter at a fixed commensurate density (often described by conformal field theories), and also compressible quantum matter with variable density, providing an extensive discussion of transport in both cases. We present a unified discussion of the holographic theory of transport with memory matrix and hydrodynamic methods, allowing a direct connection to experimentally realized quantum matter. We also explore other important challenges in non-quasiparticle physics, including symmetry broken phases such as superconductors and non-equilibrium dynamics.

484 citations


Journal ArticleDOI
TL;DR: A class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars are identified.
Abstract: We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

481 citations


Journal ArticleDOI
TL;DR: A comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress can be found in this article, where the authors present a concise, yet comprehensive overview.
Abstract: The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.

407 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions.

394 citations


Journal ArticleDOI
TL;DR: A revised translation of Kaluza's historic 1921 paper, "Zum Unitatproblem der Physik," on 5-dimensional spacetime, used to unify gravity and electromagnetism is presented in this paper.
Abstract: Revised translation of Kaluza's historic 1921 paper, "Zum Unit\"atsproblem der Physik," on 5-dimensional spacetime, used to unify gravity and electromagnetism. This version is based, in part, on a 1984 translation provided by T. Muta, but revised and formatted using LaTeX to closely match the original paper in appearance and pagination. Kaluza's original notation is restored.

306 citations


Journal ArticleDOI
TL;DR: The program to apply modern quantum field theory methods to calculate observables in classical general relativity through a truncation to classical terms of the multigraviton, two-body, on-shell scattering amplitudes between massive fields is outlined.
Abstract: Weoutline the program to apply modern quantum field theory methods to calculate observables in classical general relativity through a truncation to classical terms of the multigraviton, two-body, on-shell scattering amplitudes between massive fields. Since only long-distance interactions corresponding to nonanalytic pieces need to be included, unitarity cuts provide substantial simplifications for both post-Newtonian and post-Minkowskian expansions. We illustrate this quantum field theoretic approach to classical general relativity by computing the interaction potentials to second order in the post-Newtonian expansion, as well as the scattering functions for two massive objects to second order in the post-Minkowskian expansion. We also derive an all-order exact result for gravitational light-by-light scattering.

286 citations


Journal ArticleDOI
TL;DR: In this paper, the authors test various conjectures about quantum gravity for six-dimensional string compactifications in the framework of F-theory and show that such a limit must be located at infinite distance in the moduli space.
Abstract: We test various conjectures about quantum gravity for six-dimensional string compactifications in the framework of F-theory. Starting with a gauge theory coupled to gravity, we analyze the limit in Kahler moduli space where the gauge coupling tends to zero while gravity is kept dynamical. We show that such a limit must be located at infinite distance in the moduli space. As expected, the low-energy effective theory breaks down in this limit due to a tower of charged particles becoming massless. These are the excitations of an asymptotically tensionless string, which is shown to coincide with a critical heterotic string compactified to six dimensions. For a more quantitative analysis, we focus on a U(1) gauge symmetry and use a chain of dualities and mirror symmetry to determine the elliptic genus of the nearly tensionless string, which is given in terms of certain meromorphic weak Jacobi forms. Their modular properties in turn allow us to determine the charge-to-mass ratios of certain string excitations near the tensionless limit. We then provide evidence that the tower of asymptotically massless charged states satisfies the (sub-)Lattice Weak Gravity Conjecture, the Completeness Conjecture, and the Swampland Distance Conjecture. Quite remarkably, we find that the number theoretic properties of the elliptic genus conspire with the balance of gravitational and scalar forces of extremal black holes, such as to produce a narrowly tuned charge spectrum of superextremal states. As a byproduct, we show how to compute elliptic genera of both critical and non-critical strings, when refined by Mordell-Weil U(1) symmetries in F-theory.

274 citations


Journal ArticleDOI
TL;DR: In this paper, a degenerate higher-order scalar-tensor (DHOST) theory is presented, which can lead to a deviation from standard gravity inside matter, parametrized by three coefficients which satisfy a consistency relation.
Abstract: Theories of dark energy and modified gravity can be strongly constrained by astrophysical or cosmological observations, as illustrated by the recent observation of the gravitational wave event GW170817 and of its electromagnetic counterpart GRB 170817A, which showed that the speed of gravitational waves, ${c}_{g}$, is the same as the speed of light, within deviations of order ${10}^{\ensuremath{-}15}$. This observation implies severe restrictions on scalar-tensor theories, in particular theories whose action depends on second derivatives of a scalar field. Working in the very general framework of degenerate higher-order scalar-tensor (DHOST) theories, which encompass Horndeski and beyond Horndeski theories, we present the DHOST theories that satisfy ${c}_{g}=c$. We then examine, for these theories, the screening mechanism that suppresses scalar interactions on small scales, namely the Vainshtein mechanism, and compute the corresponding gravitational laws for a nonrelativistic spherical body. We show that it can lead to a deviation from standard gravity inside matter, parametrized by three coefficients which satisfy a consistency relation and can be constrained by present and future astrophysical observations.

267 citations


Journal ArticleDOI
TL;DR: In this article, a new parametrization for hybrid hadron-quark equations of state, which give rise to low-mass twin stars, and test them against GW170817 is found consistent with the coalescence of a binary hybrid star-neutron star.
Abstract: Gravitational wave observations of GW170817 placed bounds on the tidal deformabilities of compact stars, allowing one to probe equations of state for matter at supranuclear densities. Here we design new parametrizations for hybrid hadron-quark equations of state, which give rise to low-mass twin stars, and test them against GW170817. We find that GW170817 is consistent with the coalescence of a binary hybrid star-neutron star. We also test and find that the I-Love-Q relations for hybrid stars in the third family agree with those for purely hadronic and quark stars within $\ensuremath{\sim}3%$ for both slowly and rapidly rotating configurations, implying that these relations can be used to perform equation-of-state independent tests of general relativity and to break degeneracies in gravitational waveforms for hybrid stars in the third family as well.

259 citations


Journal ArticleDOI
TL;DR: A review of entanglement entropy from a mixed viewpoint of field theory and holography is provided in this article, where a set of basic methods for the computation is developed and illustrated with simple examples such as free theories and conformal field theories.
Abstract: Entanglement entropy plays a variety of roles in quantum field theory, including the connections between quantum states and gravitation through the holographic principle. This article provides a review of entanglement entropy from a mixed viewpoint of field theory and holography. A set of basic methods for the computation is developed and illustrated with simple examples such as free theories and conformal field theories. The structures of the ultraviolet divergences and the universal parts are determined and compared with the holographic descriptions of entanglement entropy. The utility of quantum inequalities of entanglement are discussed and shown to derive the C theorem that constrains renormalization group flows of quantum field theories in diverse dimensions.

Journal ArticleDOI
TL;DR: It is shown how the operators that naturally lie at the cutoff scale can affect the speed of propagation of gravitational waves and bring it back to unity at LIGO scales in a simple model with a known partial UV completion.
Abstract: The recent direct detection of gravitational waves from a neutron star merger with optical counterpart has been used to severely constrain models of dark energy that typically predict a modification of the gravitational wave speed. However, the energy scales observed at LIGO, and the particular frequency of the neutron star event, lie very close to the strong coupling scale or cutoff associated with many dark energy models. While it is true that at very low energies one expects gravitational waves to travel at a speed different than light in these models, the same is no longer necessarily true as one reaches energy scales close to the cutoff. We show explicitly how this occurs in a simple model with a known partial UV completion. Within the context of Horndeski, we show how the operators that naturally lie at the cutoff scale can affect the speed of propagation of gravitational waves and bring it back to unity at LIGO scales. We discuss how further missions including LISA and PTAs could play an essential role in testing such models.

Journal ArticleDOI
TL;DR: The results suggest that Bose stars may form kinetically in mainstream dark matter models such as invisible QCD axions and fuzzy dark matter.
Abstract: We study Bose-Einstein condensation and the formation of Bose stars in virialized dark matter halos and miniclusters by universal gravitational interactions. We prove that this phenomenon does occur and it is described by a kinetic equation. We give an expression for the condensation time. Our results suggest that Bose stars may form kinetically in mainstream dark matter models such as invisible QCD axions and fuzzy dark matter.

Journal ArticleDOI
TL;DR: In this article, the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach are investigated.
Abstract: We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

Journal ArticleDOI
TL;DR: In this article, the authors studied a model of inflation in which a scalar field χ is non-minimally coupled to Starobinsky's R2 gravity, and the presence of the damped oscillations during the transition from the first to second stage of inflation causes enhancement and oscillation features in the power spectrum of the curvature perturbation.
Abstract: We study a model of inflation in which a scalar field χ is non-minimally coupled to Starobinsky's R2 gravity. After transforming it to the Einstein frame, a new scalar field, the scalaron , will appear and couple to χ with a nontrivial field metric, while χ acquires a positive mass via the non-minimal coupling. Initially inflation occurs along the direction with χ trapped near its origin by this induced mass. After crosses a critical value, it starts rolling down rapidly and proceeds to damped oscillations around an effective local minimum determined by the value of χ, while inflation still continues, driven by the χ field at this second stage where the effect of the non-minimal coupling becomes negligible. The presence of the damped oscillations during the transition from the first to second stage of inflation causes enhancement and oscillation features in the power spectrum of the curvature perturbation. Assuming that the oscillations may be treated perturbatively, we calculate these features by using the δ N formalism, and discuss its observational implications to large scale CMB anomalies or primordial black hole formation, depending on the scale of the features.

Journal ArticleDOI
TL;DR: In this paper, a review of the theory of self-force in curved spacetime and its application to the gravitational two-body problem in the extreme-mass-ratio regime is presented.
Abstract: [Abridged] This review surveys the theory of gravitational self-force in curved spacetime and its application to the gravitational two-body problem in the extreme-mass-ratio regime. We first lay the relevant formal foundation, describing the rigorous derivation of the equation of self-forced motion using matched asymptotic expansions and other ideas. We then review the progress that has been achieved in numerically calculating the self-force and its physical effects in the astrophysical scenario of a compact object inspiralling into a (rotating) massive black hole. We highlight the way in which, nowadays, self-force calculations make a fruitful contact with other approaches to the two-body problem and help inform an accurate universal model of binary black hole inspirals, valid across all mass ratios. We conclude with a summary of the state of the art, open problems and prospects. Our review is aimed at non-specialist readers and is for the most part self-contained and non-technical; only elementary-level acquaintance with General Relativity is assumed. Where useful, we draw on analogies with familiar concepts from Newtonian gravity or classical electrodynamics.

Journal ArticleDOI
TL;DR: In this article, the Euclidean gravitational path integral computing the Renyi entropy was studied and analyzed under small variations, and the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion.
Abstract: We study the Euclidean gravitational path integral computing the Renyi entropy and analyze its behavior under small variations. We argue that, in Einstein gravity, the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion. This set-up is then generalized to arbitrary theories of gravity, where we show that the respective entanglement entropy functional needs to be extremized. We also extend this result to all orders in Newton’s constant G N , providing a derivation of quantum extremality. Understanding quantum extremality for mixtures of states provides a generalization of the dual of the boundary modular Hamiltonian which is given by the bulk modular Hamiltonian plus the area operator, evaluated on the so-called modular extremal surface. This gives a bulk prescription for computing the relative entropies to all orders in G N . We also comment on how these ideas can be used to derive an integrated version of the equations of motion, linearized around arbitrary states.

Journal ArticleDOI
TL;DR: In this paper, the torus partition function of an arbitrary matter theory coupled to the JT gravity, formulated in the first order (vielbein) formalism, is derived.
Abstract: The $$ T\overline{T} $$ deformation of a relativistic two-dimensional theory results in a solvable gravitational theory. Deformed scattering amplitudes can be obtained from coupling the undeformed theory to the flat space Jackiw-Teitelboim (JT) gravity. We show that the JT description is applicable and useful also in finite volume. Namely, we calculate the torus partition function of an arbitrary matter theory coupled to the JT gravity, formulated in the first order (vielbein) formalism. The first order description provides a natural set of dynamical clocks and rods for this theory, analogous to the target space coordinates in string theory. These dynamical coordinates play the role of relational observables allowing to define a torus path integral for the JT gravity. The resulting partition function is one-loop exact and reproduces the $$ T\overline{T} $$ deformed finite volume spectrum.

Journal ArticleDOI
TL;DR: The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics as discussed by the authors.
Abstract: The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized “post-Kerr” ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.

Journal ArticleDOI
TL;DR: Ezquiaga and Zumalacarregui as mentioned in this paper reviewed the different ways in which Gravitational Wave (GW) can be used to test gravity and models for late-time cosmic acceleration.
Abstract: Author(s): Ezquiaga, JM; Zumalacarregui, M | Abstract: Gravitational waves (GWs) provide a new tool to probe the nature of dark energy (DE) and the fundamental properties of gravity. We review the different ways in which GWs can be used to test gravity and models for late-time cosmic acceleration. Lagrangian-based gravitational theories beyond general relativity (GR) are classified into those breaking fundamental assumptions, containing additional fields and massive graviton(s). In addition to Lagrangian based theories we present the effective theory of DE and the μ-Σ parametrization as general descriptions of cosmological gravity. Multi-messenger GW detections can be used to measure the cosmological expansion (standard sirens), providing an independent test of the DE equation of state and measuring the Hubble parameter. Several key tests of gravity involve the cosmological propagation of GWs, including anomalous GW speed, massive graviton excitations, Lorentz violating dispersion relation, modified GW luminosity distance and additional polarizations, which may also induce GW oscillations. We summarize present constraints and their impact on DE models, including those arising from the binary neutron star merger GW170817. Upgrades of LIGO-Virgo detectors to design sensitivity and the next generation facilities such as LISA or Einstein Telescope will significantly improve these constraints in the next two decades.

Journal ArticleDOI
TL;DR: The Ooguri-Vafa swampland conjectures claim that in any consistent theory of quantum gravity, a tower of particles will become light at a rate that is exponential in the field-space distance, and this work provides a novel viewpoint on this claim.
Abstract: The Ooguri-Vafa swampland conjectures claim that in any consistent theory of quantum gravity, when venturing to large distances in scalar field space, a tower of particles will become light at a rate that is exponential in the field-space distance. We provide a novel viewpoint on this claim: If we assume that a tower of states becomes light near a particular point in field space, and we further demand that loop corrections drive both gravity and the scalar to strong coupling at a common energy scale, then the requirement that the particles become light exponentially fast in the field-space distance in Planck units follows automatically. Furthermore, the same assumption of a common strong-coupling scale for scalar fields and gravitons implies that, when a scalar field evolves over a super-Planckian distance, the average particle mass changes by an amount of the order of the cutoff energy. This supports earlier suggestions that significantly super-Planckian excursions in field space cannot be described within a single effective field theory. We comment on the relationship of our results to the weak gravity conjecture.

Journal ArticleDOI
TL;DR: A derivation for vacuum solutions of pure Einstein gravity in three-dimensional asymptotically anti-de Sitter space is presented, based on known facts about holography and on properties of tensor network renormalization, an algorithm for coarse-graining (and optimizing) tensor networks.
Abstract: A recent proposal equates the circuit complexity of a quantum gravity state with the gravitational action of a certain patch of spacetime. Since Einstein's equations follow from varying the action, it should be possible to derive them by varying complexity. I present such a derivation for vacuum solutions of pure Einstein gravity in three-dimensional asymptotically anti-de Sitter space. The argument relies on known facts about holography and on properties of tensor network renormalization, an algorithm for coarse-graining (and optimizing) tensor networks.

Journal ArticleDOI
TL;DR: In this paper, a generalized entropy model for holographic dark energy was proposed, where the Hubble horizon plays the role of IR cutoff, and there is no mutual interaction between the cosmos components.

Journal ArticleDOI
TL;DR: In this article, it was shown that higher-dimensional operators contribute positively to the entropy of a thermodynamically stable black hole at fixed mass and charge, and that the entropy shift is equivalent to a certain inequality relating the free energies of black holes.
Abstract: We prove that higher-dimension operators contribute positively to the entropy of a thermodynamically stable black hole at fixed mass and charge. Our results apply whenever the dominant corrections originate at tree level from quantum field theoretic dynamics. More generally, positivity of the entropy shift is equivalent to a certain inequality relating the free energies of black holes. These entropy inequalities mandate new positivity bounds on the coefficients of higher-dimension operators. One of these conditions implies that the charge-to-mass ratio of an extremal black hole asymptotes to unity from above for increasing mass. Consequently, large extremal black holes are unstable to decay to smaller extremal black holes and the weak gravity conjecture is automatically satisfied. Our findings generalize to arbitrary spacetime dimension and to the case of multiple gauge fields. The assumptions of this proof are valid across a range of scenarios, including string theory constructions with a dilaton stabilized below the string scale.

Journal ArticleDOI
TL;DR: In this paper, the Palatini formalism is developed for gravitational theories in flat geometries, where the affine connection is fixed to be metric compatible, as done in the usual teleparallel theories, but the constraints with suitable Lagrange multipliers.
Abstract: The Palatini formalism, which assumes the metric and the affine connection as independent variables, is developed for gravitational theories in flat geometries. We focus on two particularly interesting scenarios. First, we fix the connection to be metric compatible, as done in the usual teleparallel theories, but we follow a completely covariant approach by imposing the constraints with suitable Lagrange multipliers. For a general quadratic theory we show how torsion naturally propagates and we reproduce the Teleparallel Equivalent of General Relativity as a particular quadratic action that features an additional Lorentz symmetry. We then study the much less explored theories formulated in a geometry with neither curvature nor torsion, so that all the geometrical information is encoded in the non-metricity. We discuss how this geometrical framework leads to a purely inertial connection that can thus be completely removed by a coordinate gauge choice, the coincident gauge. From the quadratic theory we recover a simpler formulation of General Relativity in the form of the Einstein action, which enjoys an enhanced symmetry that reduces to a second linearised diffeomorphism at linear order. More general theories in both geometries can be formulated consistently by taking into account the inertial connection and the associated additional degrees of freedom. As immediate applications, the new cosmological equations and their Newtonian limit are considered, where the role of the lapse in the consistency of the equations is clarified, and the Schwarzschild black hole entropy is computed by evaluating the corresponding Euclidean action. We discuss how the boundary terms in the usual formulation of General Relativity are related to different choices of coordinates in its coincident version and show that in isotropic coordinates the Euclidean action is finite without the need to introduce boundary or normalisation terms. Finally, we discuss the double-copy structure of the gravity amplitudes and the bootstrapping of gravity within the framework of coincident General Relativity.

Journal ArticleDOI
TL;DR: In this paper, a novel theory of gravity by considering an extension of symmetric teleparallel gravity is presented, which is done by introducing, in the framework of the metric-affine formalism, a new class of theo...
Abstract: We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is done by introducing, in the framework of the metric-affine formalism, a new class of theo ...

Journal ArticleDOI
TL;DR: In this article, the spectrum of the most unstable modes of a massive vector (Proca) field for generic black-hole spin and Proca mass was derived, and the observed stability of the inner disk of stellar-mass black holes can be used to derive direct constraints on the mass of dark photons in the mass range 10−13 eV mV 3 × 10−12 eV.
Abstract: Ultralight bosons and axion-like particles appear naturally in different scenarios and could solve some long-standing puzzles. Their detection is challenging, and all direct methods hinge on unknown couplings to the Standard Model of particle physics. However, the universal coupling to gravity provides model-independent signatures for these fields. We explore here the superradiant instability of spinning black holes triggered in the presence of such fields. The instability taps angular momentum from and limits the maximum spin of astrophysical black holes. We compute, for the first time, the spectrum of the most unstable modes of a massive vector (Proca) field for generic black-hole spin and Proca mass. The observed stability of the inner disk of stellar-mass black holes can be used to derive direct constraints on the mass of dark photons in the mass range 10−13 eV mV 3 × 10−12 eV. By including also higher azimuthal modes, similar constraints apply to axion-like particles in the mass range 6 × 10−13 eV mALP 10−11 eV. Likewise, mass and spin distributions of supermassive BHs – as measured through continuum fitting, Kα iron line, or with the future space-based gravitational-wave detector LISA – imply indirect bounds in the mass range approximately 10−19 eV mV , mALP 10−13 eV, for both axion-like particles and dark photons. Overall, superradiance allows to explore a region of approximately 8 orders of magnitude in the mass of ultralight bosons.

Journal ArticleDOI
TL;DR: In this paper, a quantitative analysis on Horndeski theory at the cosmological scale is performed to constrain the Horndeck theory by GW observations in a model-independent way.
Abstract: Gravitational waves (GW) are generally affected by modification of a gravity theory during propagation at cosmological distances. We numerically perform a quantitative analysis on Horndeski theory at the cosmological scale to constrain the Horndeski theory by GW observations in a model-independent way. We formulate a parametrization for a numerical simulation based on the Monte Carlo method and obtain the classification of the models that agrees with cosmic accelerating expansion within observational errors of the Hubble parameter. As a result, we find that a large group of the models in the Horndeski theory that mimic cosmic expansion of the $\mathrm{\ensuremath{\Lambda}}\mathrm{CDM}$ model can be excluded from the simultaneous detection of a GW and its electromagnetic transient counterpart. Based on our result and the latest detection of GW170817 and GRB170817A, we conclude that the subclass of Horndeski theory including arbitrary functions ${G}_{4}$ and ${G}_{5}$ can hardly explain cosmic accelerating expansion without fine-tuning.

Journal ArticleDOI
TL;DR: It is shown that in theories approximately saturating the sLWGC, the scales at which loop corrections from the tower of charged particles to the gauge boson and graviton propagators become important are parametrically identical, suggesting a picture in which gauge fields emerge from the quantum gravity scale by integrating out a Tower of charged matter fields.
Abstract: We study ultraviolet cutoffs associated with the Weak Gravity Conjecture (WGC) and Sublattice Weak Gravity Conjecture (sLWGC). There is a magnetic WGC cutoff at the energy scale $$e G_N^{-1/2}$$ with an associated sLWGC tower of charged particles. A more fundamental cutoff is the scale at which gravity becomes strong and field theory breaks down entirely. By clarifying the nature of the sLWGC for nonabelian gauge groups we derive a parametric upper bound on this strong gravity scale for arbitrary gauge theories. Intriguingly, we show that in theories approximately saturating the sLWGC, the scales at which loop corrections from the tower of charged particles to the gauge boson and graviton propagators become important are parametrically identical. This suggests a picture in which gauge fields emerge from the quantum gravity scale by integrating out a tower of charged matter fields. We derive a converse statement: if a gauge theory becomes strongly coupled at or below the quantum gravity scale, the WGC follows. We sketch some phenomenological consequences of the UV cutoffs we derive.

Journal ArticleDOI
TL;DR: The combination of the theoretical bounds with the experimental constraints on the graviton mass implies that the latter is either ruled out or unable to describe gravitational phenomena, let alone to consistently implement the Vainshtein mechanism down to the relevant scales of fifth-force experiments, where general relativity has been successfully tested.
Abstract: We constrain effective field theories by going beyond the familiar positivity bounds that follow from unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples, we discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The combination of our theoretical bounds with the experimental constraints on the graviton mass implies that the latter is either ruled out or unable to describe gravitational phenomena, let alone to consistently implement the Vainshtein mechanism, down to the relevant scales of fifth-force experiments, where general relativity has been successfully tested. We also show that the Galileon theory must contain symmetry-breaking terms that are at most one-loop suppressed compared to the symmetry-preserving ones. We comment as well on other interesting applications of our bounds.