scispace - formally typeset
Search or ask a question
Topic

Gravitation

About: Gravitation is a research topic. Over the lifetime, 29306 publications have been published within this topic receiving 821510 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a key input circuit is described where the key input signal is serialized and applied directly and through a circulating register working with a certain delay time to one gate for transmitting the direct input signal and to another gate to transmit the output of the register utilizing the other signal as an inhibitation signal.
Abstract: In a key input circuit, the key input signal is serialized and applied directly and through a circulating register working with a certain delay time to one gate for transmitting the direct key input signal and to another gate for transmitting the output of the register utilizing the other signal as an inhibitation signal. The output of the one gate is supplied to an output means which allows the passage at a predetermined time later and the output of the another gate is used to erase the corresponding contents of the register at a predetermined time later. This erasing is inhibited for a predetermined time period to allow a new key input signal.

1,021 citations

01 Jan 2001
TL;DR: In this paper, the stability of a quantum superposition of two different stationary mass distributions is examined, where the perturbing effect of each distribution on the space-time structure is taken into account, in accordance with the principles of general relativity.
Abstract: The stability of a quantum superposition of two different stationary mass distributions is examined, where the perturbing effect of each distribution on the space-time structure is taken into account, in accordance with the principles of general relativity. It is argued that the definition of the time-translation operator for the superposed space-times involves an inherent ill-definedness, leading to an essential uncertainty in the energy of the superposed state which, in the Newtonian limit, is proportional to the gravitational self-energyEΔ of the difference between the two mass distributions. This is consistent with a suggested finite lifetime of the order of ħ/EΔ for the superposed state, in agreement with a certain proposal made by the author for a gravitationally induced spontaneous quantum state reduction, and with closely related earlier suggestions by Diosi and by Ghirardiet al.

1,013 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the particle number is an adiabatic invariant, but not a strict constant of the motion, and show that particle creation occurs in pairs.
Abstract: Spin-0 fields of arbitrary mass and massless fields of arbitrary spin are considered. The equations governing the fields are the covariant generalizations of the special-relativistic free-field equations. The metric, which is not quantized, is that of a universe with an expanding (or contracting) Euclidean 3-space. The spin-0 field of arbitrary mass is quantized in the expanding universe by the canonical procedure. The quantization is consistent with the time development dictated by the equation of motion only when the boson commutation relations are imposed. This consistency requirement provides a new proof of the connection between spin and statistics. We show that the particle number is an adiabatic invariant, but not a strict constant of the motion. We obtain an expression for the average particle density as a function of the time, and show that particle creation occurs in pairs. The canonical creation and annihilation operators corresponding to physical particles during the expansion are specified. Thus, we do not use an $S$-matrix approach. We show that in a universe with flat 3-space containing only massless particles in equilibrium, there will be precisely no creation of massless particles as a result of the expansion, provided the Einstein field equations without the cosmological term are correct. Furthermore, in a dust-filled universe with flat 3-space there will be precisely no creation of massive spin-0 particles in the limit of infinite mass, again provided that the Einstein field equations are correct. Conversely, without assuming any particular equations, such as the Einstein equations, as governing the expansion of the universe, we obtain the familiar Friedmann expansions for the radiation-filled and the dust-filled universes with flat 3-space. We only make a very general and natural hypothesis connecting the particle creation rate with the macroscopic expansion of the universe. In one derivation, we assume that in an expansion of the universe in which a particular type of particle is predominant, the type of expansion approached after a long time will be such as to minimize the average creation rate of that particle. In another derivation, we use the assumption that the reaction of the particle creation back on the gravitational field will modify the expansion in such a way as to reduce, if possible, the creation rate. This connection between the particle creation and the Einstein equations is surprising because the Einstein equations themselves played no part at all in the derivation of the equations governing the particle creation. Finally, on the basis of a so-called infinite-mass approximation, we argue that in the present predominantly dust-filled universe, only massless particles of zero spin might possibly be produced in significant amounts by the present expansion. In this connection, we show that massless particles of arbitrary nonzero spin, such as photons or gravitons, are not created by the expansion, regardless of its form.

996 citations

Journal ArticleDOI
TL;DR: In this article, the theory of 2D quantum gravity in the usual conformal gauge was solved and the critical exponents for all genera were obtained for the supersymmetric case.

995 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
96% related
Black hole
40.9K papers, 1.5M citations
94% related
Dark matter
41.5K papers, 1.5M citations
92% related
Neutrino
45.9K papers, 1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023745
20221,538
20211,353
20201,587
20191,566
20181,592