scispace - formally typeset
Search or ask a question
Topic

Gravitation

About: Gravitation is a research topic. Over the lifetime, 29306 publications have been published within this topic receiving 821510 citations.


Papers
More filters
Book
21 Sep 2009
TL;DR: In this article, the authors present detailed, physically motivated, derivations of cosmological and black hole processes in which curved spacetime plays a key role, and explain how such processes in the rapidly expanding early universe leave observable consequences today, and how in the context of evaporating black holes, these processes uncover deep connections between gravitation and elementary particles.
Abstract: Quantum field theory in curved spacetime has been remarkably fruitful. It can be used to explain how the large-scale structure of the universe and the anisotropies of the cosmic background radiation that we observe today first arose. Similarly, it provides a deep connection between general relativity, thermodynamics, and quantum field theory. This book develops quantum field theory in curved spacetime in a pedagogical style, suitable for graduate students. The authors present detailed, physically motivated, derivations of cosmological and black hole processes in which curved spacetime plays a key role. They explain how such processes in the rapidly expanding early universe leave observable consequences today, and how in the context of evaporating black holes, these processes uncover deep connections between gravitation and elementary particles. The authors also lucidly describe many other aspects of free and interacting quantized fields in curved spacetime.

568 citations

Journal ArticleDOI
TL;DR: In this article, a spin foam model for 4D Riemannian quantum gravity was proposed, which generalizes the Barrett-Crane model and resolves the inherent to it ultra-locality problem.
Abstract: Starting from Plebanski formulation of gravity as a constrained BF theory we propose a new spin foam model for 4D Riemannian quantum gravity that generalizes the well-known Barrett–Crane model and resolves the inherent to it ultra-locality problem. The BF formulation of 4D gravity possesses two sectors: gravitational and topological ones. The model presented here is shown to give a quantization of the gravitational sector, and is dual to the recently proposed spin foam model of Engle et al which, we show, corresponds to the topological sector. Our methods allow us to introduce the Immirzi parameter into the framework of spin foam quantization. We generalize some of our considerations to the Lorentzian setting and obtain a new spin foam model in that context as well.

567 citations

Journal ArticleDOI
TL;DR: Some discrete lattice models for quantum two-dimensional euclidean gravity are shown to be equivalent to zero-dimensional planar field theories as mentioned in this paper, and a universal continuum limit exists for open surfaces, but not for closed ones.

557 citations

Journal ArticleDOI
TL;DR: In this article, the authors classified the action of one parameter isometry groups of Gravitational instantons, complete non-singular positive definite solutions of the Einstein equations with or without Λ term.
Abstract: We classify the action of one parameter isometry groups of Gravitational Instantons, complete non singular positive definite solutions of the Einstein equations with or without Λ term. The fixed points of the action are of 2-types, isolated points which we call “nuts” and 2-surfaces which we call “bolts”. We describe all known gravitational instantons and relate the numbers and types of the nuts and bolts occurring in them to their topological invariants. We perform a 3+1 decomposition of the field equations with respect to orbits of the isometry group and exhibit a certain duality between “electric” and “magnetic” aspects of gravity. We also obtain a formula for the gravitational action of the instantons in terms of the areas of the bolts and certain nut charges and potentials that we define. This formula can be interpreted thermodynamically in several ways.

556 citations

Journal ArticleDOI
TL;DR: In this article, the field equations governing the gravitational field of a uniformly rotating axially symmetric source are reformulated in terms of a simple variational principle, which affords a concise unified derivation of the solutions discovered by Weyl and Papapetrou.
Abstract: The field equations governing the gravitational field of a uniformly rotating axially symmetric source are reformulated in terms of a simple variational principle. The new formalism affords a concise unified derivation of the solutions discovered by Weyl and Papapetrou, and permits a simple derivation of the Kerr metric in terms of prolate spheroidal coordinates. More complex solutions are identified by applying perturbation theory.

556 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
96% related
Black hole
40.9K papers, 1.5M citations
94% related
Dark matter
41.5K papers, 1.5M citations
92% related
Neutrino
45.9K papers, 1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023745
20221,538
20211,353
20201,587
20191,566
20181,592