scispace - formally typeset
Search or ask a question
Topic

Gravitation

About: Gravitation is a research topic. Over the lifetime, 29306 publications have been published within this topic receiving 821510 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: There is a unique nonminimal derivative coupling of the standard model Higgs boson to gravity such that it propagates no more degrees of freedom than general relativity sourced by a scalar field, reproduces a successful inflating background within the standardmodel Higgs parameters, and finally does not suffer from dangerous quantum corrections.
Abstract: In this Letter we show that there is a unique nonminimal derivative coupling of the standard model Higgs boson to gravity such that it propagates no more degrees of freedom than general relativity sourced by a scalar field, reproduces a successful inflating background within the standard model Higgs parameters, and finally does not suffer from dangerous quantum corrections.

486 citations

Book
16 Mar 2018
TL;DR: In this paper, a review of theories of states of quantum matter without quasiparticle excitations is provided through a holographic duality with gravitational theories in an emergent spatial dimension.
Abstract: We present a review of theories of states of quantum matter without quasiparticle excitations. Solvable examples of such states are provided through a holographic duality with gravitational theories in an emergent spatial dimension. We review the duality between gravitational backgrounds and the various states of quantum matter which live on the boundary. We then describe quantum matter at a fixed commensurate density (often described by conformal field theories), and also compressible quantum matter with variable density, providing an extensive discussion of transport in both cases. We present a unified discussion of the holographic theory of transport with memory matrix and hydrodynamic methods, allowing a direct connection to experimentally realized quantum matter. We also explore other important challenges in non-quasiparticle physics, including symmetry broken phases such as superconductors and non-equilibrium dynamics.

484 citations

Book
01 Jan 2004

484 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the scalar and tensor modes of cosmological perturbations and obtained a scale-invariant primordial power spectrum, which is consistent with Cosmological observations, but suffers from the problem of a large tensor-to-scalar ratio.
Abstract: We show that the f(T) gravitational paradigm, in which gravity is described by an arbitrary function of the torsion scalar, can provide a mechanism for realizing bouncing cosmologies, thereby avoiding the Big Bang singularity. After constructing the simplest version of an f(T) matter bounce, we investigate the scalar and tensor modes of cosmological perturbations. Our results show that metric perturbations in the scalar sector lead to a background-dependent sound speed, which is a distinguishable feature from Einstein gravity. Additionally, we obtain a scale-invariant primordial power spectrum, which is consistent with cosmological observations, but suffers from the problem of a large tensor-to-scalar ratio. However, this can be avoided by introducing extra fields, such as a matter bounce curvaton.Communicated by P R L V Moniz

484 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott2, T. D. Abbott, Sheelu Abraham  +1138 moreInstitutions (6)
TL;DR: In this paper, the authors present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity, including the best-fit waveform from the data and the consistency with detector noise.
Abstract: The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low- and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in the post-Newtonian coefficients) are consistent with 0. The fourth test constrains modifications to the propagation of gravitational waves due to a modified dispersion relation, including that from a massive graviton. We present results both for individual events and also results obtained by combining together particularly strong events from the first and second observing runs of Advanced LIGO and Advanced Virgo, as collected in the catalog GWTC-1. We do not find any inconsistency of the data with the predictions of general relativity and improve our previously presented combined constraints by factors of 1.1 to 2.5. In particular, we bound the mass of the graviton to be mg≤4.7×10-23 eV/c2 (90% credible level), an improvement of a factor of 1.6 over our previously presented results. Additionally, we check that the four gravitational-wave events published for the first time in GWTC-1 do not lead to stronger constraints on alternative polarizations than those published previously.

482 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
96% related
Black hole
40.9K papers, 1.5M citations
94% related
Dark matter
41.5K papers, 1.5M citations
92% related
Neutrino
45.9K papers, 1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023745
20221,538
20211,353
20201,587
20191,566
20181,592