scispace - formally typeset
Search or ask a question
Topic

Gravitation

About: Gravitation is a research topic. Over the lifetime, 29306 publications have been published within this topic receiving 821510 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it is pointed out that string-loop effects may generate matter couplings for the dilaton allowing this scalar partner of the tensorial graviton to stay massless while contributing to macroscopic gravity in a way naturally compatible with existing experimental data.
Abstract: It is pointed out that string-loop effects may generate matter couplings for the dilaton allowing this scalar partner of the tensorial graviton to stay massless while contributing to macroscopic gravity in a way naturally compatible with existing experimental data. Under a certain assumption of universality of the dilaton coupling functions, the cosmological evolution drives the dilaton towards values where it decouples from matter. At the present cosmological epoch, the coupling to matter of the dilaton should be very small, but non zero. This provides a new motivation for improving the experimental tests of Einstein's Equivalence Principle.

443 citations

Journal ArticleDOI
TL;DR: In this article, a new approach to the cosmological constant problem is proposed, which makes essential use of an extra dimension, and the strong curvature region of the solutions may effectively cut off the size of the extra dimension and give rise to macroscopic 4D gravity.

443 citations

Journal ArticleDOI
TL;DR: This work imposes that the matter threading the wormhole satisfies the energy conditions, so that it is the effective stress-energy tensor containing higher order curvature derivatives that is responsible for the null energy condition violation.
Abstract: In this work, we construct traversable wormhole geometries in the context of f (R) modified theories of gravity. We impose that the matter threading the wormhole satisfies the energy conditions, so that it is the effective stress-energy tensor containing higher order curvature derivatives that is responsible for the null energy condition violation. Thus, the higher order curvature terms, interpreted as a gravitational fluid, sustain these nonstandard wormhole geometries, fundamentally different from their counterparts in general relativity. In particular, by considering specific shape functions and several equations of state, exact solutions for f(R) are found.

442 citations

Journal ArticleDOI
TL;DR: In this article, the universe is conceived as the response of matter and the gravitational field to a spontaneous point-like disturbance, and the history unfolds in two stages, creation and free expansion.

440 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the possibilities of detecting the various subtypes of (excited) BSs: possible signals include gravitational redshift and (micro-)lensing, emission of gravitational waves, or, in the case of a giant BS, its dark matter contribution to the rotation curves of galactic halos.
Abstract: There is accumulating evidence that (fundamental) scalar fields may exist in Nature. The gravitational collapse of such a boson cloud would lead to a boson star (BS) as a new type of a compact object. Similarly as for white dwarfs and neutron stars, there exists a limiting mass, below which a BS is stable against complete gravitational collapse to a black hole. According to the form of the self-interaction of the basic constituents and the spacetime symmetry, we can distinguish mini-, axidilaton, soliton, charged, oscillating and rotating BSs. Their compactness prevents a Newtonian approximation, however, modifications of general relativity, as in the case of Jordan-Brans-Dicke theory as a low energy limit of strings, would provide them with gravitational memory. In general, a BS is a compact, completely regular configuration with structured layers due to the anisotropy of scalar matter, an exponentially decreasing 'halo', a critical mass inversely proportional to constituent mass, an effective radius, and a large particle number. Due to the Heisenberg principle, there exists a completely stable branch, and as a coherent state, it allows for rotating solutions with quantised angular momentum. In this review, we concentrate on the fascinating possibilities of detecting the various subtypes of (excited) BSs: Possible signals include gravitational redshift and (micro-)lensing, emission of gravitational waves, or, in the case of a giant BS, its dark matter contribution to the rotation curves of galactic halos.

435 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
96% related
Black hole
40.9K papers, 1.5M citations
94% related
Dark matter
41.5K papers, 1.5M citations
92% related
Neutrino
45.9K papers, 1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023745
20221,538
20211,353
20201,587
20191,566
20181,592