scispace - formally typeset
Search or ask a question
Topic

Gravitation

About: Gravitation is a research topic. Over the lifetime, 29306 publications have been published within this topic receiving 821510 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress can be found in this article, where the authors present a concise, yet comprehensive overview.
Abstract: The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.

407 citations

Journal ArticleDOI
TL;DR: In this article, the effects of viscosity terms depending on the Hubble parameter and its derivatives in the dark energy equation of state were investigated for two classes of models whose singularities in the early and late time universe have been studied by testing the models against the dimensionless coordinate distance to Type Ia Supernovae and radio galaxies also including priors on the shift and acoustic peak parameters.
Abstract: We investigate the effects of viscosity terms depending on the Hubble parameter and its derivatives in the dark energy equation of state. Such terms are possible if dark energy is a fictitious fluid originating from corrections to the Einstein general relativity as is the case for some braneworld inspired models or fourth order gravity. We consider two classes of models whose singularities in the early and late time universe have been studied by testing the models against the dimensionless coordinate distance to Type Ia Supernovae and radio galaxies also including priors on the shift and the acoustic peak parameters. It turns out that both models are able to explain the observed cosmic speed up without the need of phantom (w<-1) dark energy.

406 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study the dynamics of strongly interacting gauge-theory matter (modeling quark-gluon plasma) in a boost-invariant setting using the AdS/CFT correspondence.
Abstract: We study the dynamics of strongly interacting gauge-theory matter (modelling quark-gluon plasma) in a boost-invariant setting using the AdS/CFT correspondence. Using Fefferman-Graham coordinates and with the help of holographic renormalization, we show that perfect fluid hydrodynamics emerges at large times as the unique nonsingular asymptotic solution of the nonlinear Einstein equations in the bulk. The gravity dual can be interpreted as a black hole moving off in the fifth dimension. Asymptotic solutions different from perfect fluid behaviour can be ruled out by the appearance of curvature singularities in the dual bulk geometry. Subasymptotic deviations from perfect fluid behaviour remain possible within the same framework.

405 citations

Journal ArticleDOI
TL;DR: In this paper, a universal description of dark energy and modified gravity is proposed, which includes all single-field models and includes covariant field operators, as well as the residual unbroken symmetries of spatial diffeomorphisms.
Abstract: We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar can always be de-mixed from gravity at quadratic order in the perturbations, but not necessarily through a conformal rescaling of the metric. We show how to express covariant field-operators in our formalism and give several explicit examples of dark energy and modified gravity models in our language. Finally, we discuss the relation with the covariant EFT methods recently appeared in the literature.

404 citations

Journal ArticleDOI
TL;DR: In this paper, a geometrical interpretation of the appearance of SL(2, R ) symmetry in the 2D quantum gravity is given in terms of the theory of the coadjoint orbits of the Virasoro group.

403 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
96% related
Black hole
40.9K papers, 1.5M citations
94% related
Dark matter
41.5K papers, 1.5M citations
92% related
Neutrino
45.9K papers, 1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023745
20221,538
20211,353
20201,587
20191,566
20181,592