scispace - formally typeset
Search or ask a question
Topic

Greedy algorithm

About: Greedy algorithm is a research topic. Over the lifetime, 15347 publications have been published within this topic receiving 393945 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An integrated model, a mixed-integer linear program, is presented, to solve the ship-scheduling and the cargo-routing problems, simultaneously, and an efficient iterative search algorithm is proposed to generate schedules for ships.
Abstract: Acommon problem faced by carriers in liner shipping is the design of their service network. Given a set of demands to be transported and a set of ports, a carrier wants to design service routes for its ships as efficiently as possible, using the underlying facilities. Furthermore, the profitability of the service routes designed depends on the paths chosen to ship the cargo. We present an integrated model, a mixed-integer linear program, to solve the ship-scheduling and the cargo-routing problems, simultaneously. The proposed model incorporates relevant constraints, such as the weekly frequency constraint on the operated routes, and emerging trends, such as the transshipment of cargo between two or more service routes. To solve the mixed-integer program, we propose algorithms that exploit the separability of the problem. More specifically, a greedy heuristic, a column generation-based algorithm, and a two-phase Benders decomposition-based algorithm are developed, and their computational efficiency in terms of the solution quality and the computational time taken is discussed. An efficient iterative search algorithm is proposed to generate schedules for ships. Computational experiments are performed on randomly generated instances simulating real life with up to 20 ports and 100 ships. Our results indicate high percentage utilization of ships' capacities and a significant number of transshipments in the final solution.

394 citations

Journal ArticleDOI
TL;DR: A novel “coverage by directional sensors” problem with tunable orientations on a set of discrete targets is studied and a distributed greedy algorithm (DGA) solution is provided by incorporating a measure of the sensors residual energy into DGA.
Abstract: We study a novel “coverage by directional sensors” problem with tunable orientations on a set of discrete targets. We propose a Maximum Coverage with Minimum Sensors (MCMS) problem in which coverage in terms of the number of targets to be covered is maximized whereas the number of sensors to be activated is minimized. We present its exact Integer Linear Programming (ILP) formulation and an approximate (but computationally efficient) centralized greedy algorithm (CGA) solution. These centralized solutions are used as baselines for comparison. Then we provide a distributed greedy algorithm (DGA) solution. By incorporating a measure of the sensors residual energy into DGA, we further develop a Sensing Neighborhood Cooperative Sleeping (SNCS) protocol which performs adaptive scheduling on a larger time scale. Finally, we evaluate the properties of the proposed solutions and protocols in terms of providing coverage and maximizing network lifetime through extensive simulations. Moreover, for the case of circular coverage, we compare against the best known existing coverage algorithm.

393 citations

Journal ArticleDOI
TL;DR: A simple and efficient hybrid attribute reduction algorithm based on a generalized fuzzy-rough model based on fuzzy relations is introduced and the technique of variable precision fuzzy inclusion in computing decision positive region can get the optimal classification performance.

390 citations

Journal ArticleDOI
TL;DR: This paper shows that the greedy algorithm finds a solution with value at least 1/(1 + α) times the optimum value, where α is a parameter which represents the ‘total curvature’ of Z, and can prove the optimality of the greedy algorithms even in instances where Z is not additive.

387 citations

Proceedings ArticleDOI
01 Jan 1998
TL;DR: These tools provide a unifying, intuitive, and powerful framework for carrying out the analysis of several previously studied random processes of interest, including random loss-resilient codes, solving random k-SAT formula using the pure literal rule, and the greedy algorithm for matchings in random graphs.
Abstract: We introduce a new set of probabilistic analysis tools based on the analysis of And-Or trees with random inputs. These tools provide a unifying, intuitive, and powerful framework for carrying out the analysis of several previously studied random processes of interest, including random loss-resilient codes, solving random k-SAT formula using the pure literal rule, and the greedy algorithm for matchings in random graphs. In addition, these tools allow generalizations of these problems not previously analyzed to be analyzed in a straightforward manner. We illustrate our methodology on the three problems listed above

386 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
92% related
Wireless network
122.5K papers, 2.1M citations
88% related
Network packet
159.7K papers, 2.2M citations
88% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Node (networking)
158.3K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023350
2022690
2021809
2020939
20191,006
2018967