scispace - formally typeset
Search or ask a question
Topic

Greedy algorithm

About: Greedy algorithm is a research topic. Over the lifetime, 15347 publications have been published within this topic receiving 393945 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a modified iterated greedy (MIG) algorithm is proposed to minimize the maximum completion time among all the factories in a distributed permutation flowshop scheduling problem.
Abstract: The distributed permutation flowshop scheduling problem (DPFSP) is a newly proposed topic in the shop scheduling field, which has important application in globalised and multi-plant environments. This study presents a modified iterated greedy (MIG) algorithm for this problem to minimise the maximum completion time among all the factories. Compared with previous approaches, the proposed algorithm is simpler yet more effective, more efficient, and more robust in solving the DPFSP. To validate the performance of the proposed MIG algorithm, computational experiments and comparisons are conducted on an extended benchmark problem set of Taillard. Despite its simplicity, the computational results show that the proposed MIG algorithm outperforms all existing algorithms, and the best-known solutions for almost half of instances are updated. This study can be offered as a contribution to the growing body of work on both theoretically and practically useful approaches to the DPFSP.

150 citations

Proceedings ArticleDOI
09 Jul 2007
TL;DR: This paper proposes a more exhaustive matchmaking algorithm, based on the concept of matching bipartite graphs, to overcome the problems faced with the original algorithm.
Abstract: The ability to dynamically discover and invoke a Web service is a critical aspect of service oriented architectures. An important component of the discovery process is the matchmaking algorithm itself. In order to overcome the limitations of a syntax-based search, matchmaking algorithms based on semantic techniques have been proposed. Most of them are based on an algorithm originally proposed by M. Paolucci, et al. [19]. In this paper, we analyze this original algorithm and identify some correctness issues with it. We illustrate how these issues are an outcome of the greedy approach adopted by the algorithm. We propose a more exhaustive matchmaking algorithm, based on the concept of matching bipartite graphs, to overcome the problems faced with the original algorithm. We analyze the complexity of both the algorithms and present performance results based on our implementation of both these algorithms. We show that the complexity of our algorithm is equivalent to that of the original algorithm in spite of the improvements we have made to address the correctness issues.

149 citations

Proceedings ArticleDOI
01 Dec 2003
TL;DR: This work presents a method that finds optimal Bayesian networks of considerable size and shows first results of the application to yeast data.
Abstract: Finding gene networks from microarray data has been one focus of research in recent years. Given search spaces of super-exponential size, researchers have been applying heuristic approaches like greedy algorithms or simulated annealing to infer such networks. However, the accuracy of heuristics is uncertain, which--in combination with the high measurement noise of microarrays--makes it very difficult to draw conclusions from networks estimated by heuristics. We present a method that finds optimal Bayesian networks of considerable size and show first results of the application to yeast data. Having removed the uncertainty due to the heuristic methods, it becomes possible to evaluate the power of different statistical models to find biologically accurate networks.

149 citations

Journal ArticleDOI
TL;DR: A systematic treatment of algorithms for determining RRQR factorisations and presents "hybrid" algorithms that solve the optimisation problems almost exactly (up to a factor proportional to the size of the matrix).
Abstract: The problem of finding a rank-revealing QR (RRQR) factorisation of a matrix $A$ consists of permuting the columns of $A$ such that the resulting QR factorisation contains an upper triangular matrix whose linearly dependent columns are separated from the linearly independent ones. In this paper a systematic treatment of algorithms for determining RRQR factorisations is presented. In particular, the authors start by presenting precise mathematical formulations for the problem of determining a RRQR factorisation, all of them optimisation problems. Then a hierarchy of "greedy" algorithms is derived to solve these optimisation problems, and it is shown that the existing RRQR algorithms correspond to particular greedy algorithms in this hierarchy. Matrices on which the greedy algorithms, and therefore the existing RRQR algorithms, can fail arbitrarily badly are presented. Finally, motivated by an insight from the behaviour of the greedy algorithms, the authors present "hybrid" algorithms that solve the optimisation problems almost exactly (up to a factor proportional to the size of the matrix). Applying the hybrid algorithms as a follow-up to the conventional greedy algorithms may prove to be useful in practice.

149 citations

Journal ArticleDOI
27 Mar 2019-Sensors
TL;DR: Simulation results prove the presented schema outperforms some similar work such as Cluster-Chain Mobile Agent Routing (CCMAR) and Energy-efficient Cluster-based Dynamic Routing Algorithm (ECDRA) and the influence of different network parameters on the performance of the network and further enhance its performance.
Abstract: Recently, wireless sensor network (WSN) has drawn wide attention. It can be viewed as a network with lots of sensors that are autonomously organized and cooperate with each other to collect, process, and transmit data around targets to some remote administrative center. As such, sensors may be deployed in harsh environments where it is impossible for battery replacement. Therefore, energy efficient routing is crucial for applications that introduce WSNs. In this paper, we present an energy efficient routing schema combined with clustering and sink mobility technology. We first divide the whole sensor field into sectors and each sector elects a Cluster Head (CH) by calculating its members’ weight. Member nodes calculate energy consumption of different routing paths to choose the optimal scenario. Then CHs are connected into a chain using the greedy algorithm for intercluster communication. Simulation results prove the presented schema outperforms some similar work such as Cluster-Chain Mobile Agent Routing (CCMAR) and Energy-efficient Cluster-based Dynamic Routing Algorithm (ECDRA). Additionally, we explore the influence of different network parameters on the performance of the network and further enhance its performance.

149 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
92% related
Wireless network
122.5K papers, 2.1M citations
88% related
Network packet
159.7K papers, 2.2M citations
88% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Node (networking)
158.3K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023350
2022690
2021809
2020939
20191,006
2018967